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Abstract. We characterize the semi-Kelley compactifications of (0, 1] with remain-
der being an arc or a simple closed curve. We also prove that there are no semi-Kelley
compactifications of (0,1] with remainder being a triod. Finally, we prove that if X is a
semi-Kelley compactification of (0,1] with remainder being a Peano continuum G, then
G is an arc or a simple closed curve.

1. Introduction. A continuum is a compact connected metric space
with more than one point. A subcontinuum of a continuum X is a nonempty
compact connected subset of X, so one point subsets of X are subcontinua
of X. Given a continuum X, we consider the hyperspace C'(X) of subcontinua
of X with the Hausdorff metric H (see [9, Definition 2.1, p. 11]).

A continuum X is said to be a Kelley continuum provided that for each
point p € X, for each subcontinuum K of X containing p, and for each
sequence {p,}°°; in X converging to p, there exists a sequence {K,}> ; of
subcontinua of X converging to K such that p, € K, for every n € N.

Let K be a subcontinuum of a continuum X. A continuum M C K is
called a mazimal limit continuum of K in X if there is a sequence { M, }2°
of subcontinua of X converging to M such that for each convergent se-
quence {M] }°°; of subcontinua of X with M, C M] for each n € N, and
limy, 0o M), = M’ C K, we have M’ = M. A continuum X is said to be a
semi-Kelley continuum if for each subcontinuum K of X and for any two
maximal limit continua L and M of K in X, either L C M or M C L.

Kelley continua were introduced by J. L. Kelley [11] and they have been
useful in the study of contractibility of hyperspaces and in the study of ho-
mogeneous continua. Semi-Kelley continua were introduced by J. J. Chara-
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tonik and W. J. Charatonik [5] as a weaker version of Kelley continua. The
authors of [5] generalized several results known for Kelley continua to semi-
Kelley continua concerning products, hyperspaces, and mapping properties.
For instance, they proved that if a Cartesian product of two nondegenerate
continua is semi-Kelley, then each factor continuum is Kelley [5, Theorem
4.1, p. 80|, but the converse does not hold [5, Example 4.3, p. 81]. In [3],
E. Castaneda-Alvarado and 1. Vidal-Escobar answered questions posed by
J. J. Charatonik, W. J. Charatonik, and A. Illanes by constructing a Kelley
continuum X such that neither X x [0, 1] nor C'(X) nor small Whitney lev-
els in C'(X) are semi-Kelley continua. Recently, in [§], A. Illanes presented
an equivalent definition of semi-Kelley continua and he used it to generalize
some previous results and to obtain new ones. For more information about
semi-Kelley continua, we refer the reader to [§] and [6].

A Kelley continuum X is a Kelley compactification if it is a compactifica-
tion of (0,1]. A semi-Kelley continuum X is a semi-Kelley compactification
if it is a compactification of (0,1]. A continuum X is a Kelley remainder,
respectively semi-Kelley remainder, if it is the remainder of a Kelley compact-
ification, respectively semi-Kelley compactification. Kelley compactifications
were studied in [Il, Section 6] and [14], Corollary 7.2, p. 673|; Kelley remainders
were studied in [2] and [4]. G. Acosta and A. Illanes showed that if X is a Kelley
compactification then X is atriodic and each subcontinuum of X is a Kelley
continuum [I, Theorems 6.2 and 6.3]. P. Pellicer-Covarrubias [14] proved that
a continuum X is hereditarily indecomposable if and only if for each compact-
ification Z of (0, 1] with remainder X, Z is a Kelley continuum. R. A. Beane
and W. J. Charatonik showed that arc-like Kelley continua and Kelley arc con-
tinua are Kelley remainders |2, Theorems 2.3 and 3.1]. M. E. Chacén-Tirado
proved that circle-like Kelley continua are Kelley remainders [4, Theorem 1,
p. 170]. An interesting problem in this area is to determine which known
results for Kelley remainders can be extended to semi-Kelley remainders.

In this paper we characterize the semi-Kelley compactifications with re-
mainder being an arc or a simple closed curve. A continuum X is called a
triod if there is a subcontinuum Z of X such that X\ Z is the union of three
nonempty sets any two of which are mutually separated in X [I3] Definition
11.22, p. 208]. We prove that triods are not semi-Kelley remainders. We also
prove that if a Peano continuum G is a semi-Kelley remainder, then G is an
arc or a simple closed curve.

2. Preliminaries. A map is a continuous function. Given a continuum
X with metric d, a point p € X, a nonempty subset A of X, and a positive
real number e, we define B(e,p) = {z € X : d(p,x) < €}, N(g,4) =
U{B(e,z) : z € A}, and d(p, A) = inf {d(p,z) : = € A}.
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THEOREM 2.1 ([8, Theorem 2.1]). Let X be a continuum. Then X is not
a semi-Kelley continuum if and only if there exist a subcontinuum K of X,
an open subset U of X, and sequences {Ap}02, and { By} of components
of cl(U) converging to respective subcontinua A and B of X such that

(1) K cU,
(2) (ANK)\B#0 and (BNK)\ A # 0.

REMARK 2.2. Let X be a continuum. Let A, B, K, U, A,, and B, be
subsets of X for every n € N, as giwen in Theorem [2.1]

(1) If D is the component of cl(U) that contains K, then K ¢ int(D).

(2) If V is an open subset of X such that K C V C U, then there exist
E,F € C(X) and two sequences {En}o2, {Fn}>2, of components
of cl(V) converging to E and F, respectively, such that ENK ¢ F
and FNK ¢ E.

Proof. (1) Assume K C int(D) and a € AN K. Since lim, o A, = A,
there exists a, € A,, for every n € N, such that lim, .o a, = a. As
a € int(D), there exists m € N such that a, € int(D) for all n > m. As
A, and D are components of cl(U) that contain a,, we have A,, = D for all
n > m. Hence, A = D. In a similar way, B = D. So (AN K) \ B = (), which
is a contradiction. Therefore, K ¢ int(D).

(2) Let a € (ANK)\ Band b e (BNK)\ A. Since lim,_,oc 4, = A
and lim,, .., B, = B, there exist a, € A, and b, € B,, for every n € N,
such that lim, . a, = a and lim,_, b, = b. We can clearly assume that
an, by, € V for all n € N. Let E,, and F,, be the components of cl(V') that
contain a, and b, respectively. Then E,, C A, and F,, C B,,. Without loss
of generality suppose that lim,, ., F, = E and lim,_, F,, = F for some
E,F € C(X). Notice that E C A, F C B,a € ENK,and b € FNK. Hence,
ENKgFand FNKZFE. =

LEMMA 2.3. Let X = (0,1]UY be a compactification of (0, 1] with remain-
der'Y, K be a subcontinuum of Y, and M be a maximal limit continuum of
K inY. Then M is a mazimal limit continuum of K in X.

Proof. Since M is a maximal limit continuum of K in Y, there exists a
sequence { M, }>°; of subcontinua of ¥ such that
(1) limy oo My, = M,
(2) for every convergent sequence {M),
M,, C M], for each n € N we have

if lim M), = M' C K then M = M’.

n—o0

o0

o, of subcontinua of Y with

Let {M]'}>2 , be a convergent sequence of subcontinua of X with M, C M/,
for each n € N, and lim,,_,oc M) = M" C K. We shall prove that M" = M.
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CASE 1. There exist ny < ng < --- such that My 0 (0,1] # 0 for each
k € N. In this case Y C M, for every k € N, and so Y C limy_,00 M}, =

M" c K CY. Hence, Y = K = M". Since Y is the unique maximal limit
continuum of Y in Y, we have Y = M and so M = M".

CASE 2. There is N € N such that M) N (0,1] = 0 for each n > N. In
this case, we obtain M)/ C Y for every n > N. Since M is a maximal limit
continuum of K in Y, it follows that M = M".

In both cases we obtain M = M". Therefore M is a maximal limit
continuum of K in X. =

COROLLARY 2.4. Let X = (0,1] UY be a compactification of (0,1] with
remainder Y. If X is a semi-Kelley continuum, then so isY.

3. Characterization of semi-Kelley compactifications with re-
mainder being an arc. A continuum X is called an E-continuum if X is
a compactification of (0, 1] with remainder being an arc.

REMARK 3.1. If X is an F-continuum, then by [12 (3.1) Lemma, p. 330],
we can consider X embedded in the plane in such a way that the remainder
is {0} x [0,1] and the rest of the continuum is the graph of a continuous
function fx from (0, 1] to [0, 1].

[0,1] will always be considered as in Remark Given i,n € N, let A},

THEOREM 3.2. Let X be an E-continuum. Then the following statements
are equivalent:

For the rest of this paper, an E-continuum X and a map fx : (0,1] —

(1) X is not a semi-Kelley continuum.
(2) There exist n,i,j,k, €N, withn>4,2<j k<n—1,i<min{j,k}—1,
I > max{j,k} + 1 such that for each e € (0,1],
(a) there exist 0 < u < v < w < € such that fx(u), fx(w) € Al
fx() € Al and fx([u,w]) C Ufn:j AT and
(b) there exist 0 < z < y < z < & such that fx(x), fx(z) € A,
fx(y) € A and fx(fz,2]) € Up—; A7
Proof. Assume (2) holds and take n, i, j, k, [ as given in (2). Let ¢ € (0, 1].
Define

an’ n 4dn

{ 1 1-1 1

K = {0} x [min{j;bk}—l_l max{j’k}+1]’
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Fig. 1. Sets used in (2)=-(1), assuming j < k

Notice that K C U. By hypothesis, we can define six sequences of points

n (075)7 {UT}TC«X;D {UT}vc“x;l’ {wT}Silv {"ET}?(;I’ {yr}:ila and {ZT}?il converg-
ing to 0 such that w,41 < x, < ypr < 2 < up < vy < w, for each r € N.
Further u,, v,, and w, satisfy (a), and xz,, y,, and z, satisfy (b). For all
r € N, let B, and A, be the components of cl(U) that contain (v,, fx(v,))
and (yr, fx (yr)), respectively (see Figure[l)). The following claim is clear.

CramM 1. If D e C(X), 0<p<q<1, and (p, fx(p), (¢, fx(q)) € D,
then {(t, fx(t)) : t € [p,q]} C D.

We prove the following claim.
CLAM 2. If (t, fx(t)) € Ay, then t € [z, z,].

Let t € (0,1] be such that (¢, fx(t)) € A,. Assume that ¢ > z,. By the
Intermediate Value Theorem, there exists v € [y, 2| such that fx(v) =i/n.
By Claim ' (v,i/n) G A,. We have the required contradiction, since A, C

(U) C 0,1] x [£ + 5, 71 — 5-]. In a similar way, we find a contradiction
if t <.
By Claim 2] A,  {(t, fx(t)) : ¢ [xr,zr]} Clermz]x [E+ L k. Ina

similar way, B, C [u, wy] X [ —Lo=l ] By the Boundary Bumping The-

n
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orem, there exist p, € [@r, 2] and ¢, € [u,, w,] such that (pr, % + 5 5) € Ay

and (qr, lTl — —) € B, for each r € N. By the Intermediate Value Theorem

there exist a, € [zy, 2;] and S, € [u,, w,] such that fx(a,) = % — ﬁ
and fx(Br) = M + & for each r € N.

We can clearly assume that lim, o A, = A and lim, _, o, B, = B for some
A,B€C(X). Notice that AC {0}x[£+ L £] and B C {0} x [Jnl, =L
Moreover (O,M — ﬁ) € (ANK)\ B and (0, max{]k} +4) €
(BN K) \ A. By Theorem 2.1 X is not a semi-Kelley continuum.

Now, assume (1) holds. By Theorem [2.1] -, there exist subcontinua A, B,
and K of X, an open subset U of X, and sequences {4,}7°,, {B,}>2, of
components of cl(U) converging to A and B, respectively, such that K C U,
ANK ¢ B, and BN K ¢ A. Notice that K # X. Let graph(fx) =
{(a, fx(a)) € R?: a € (0,1]}. Consider the following two cases.

(0,1)

(0,0)

Fig. 2. Sets used in (1)=-(2), assuming § < 7y

CASE 1: K C graph(fx). Since the points of K are points of local con-
nectedness of X, there exists an open connected subset V' of X such that
K CcV CcU. By Remark there exist F, F € C(X) and two sequences
{E: 122, {F}92, of components of cl(V) converging to E and F, respec-
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tively, such that ENK ¢ F and FNK ¢ E (see Figure[2). Since cl(V) is a
connected set, E, = cl(V) = F, for all » € N. Hence, E = cl(V) = F. This
contradicts the fact that FN K ¢ E.

Case 2: {0} x [0,1] € K. Since K # X, there exists 0 < ¢ < 1 such
that K C ([0,e) x [0,1])N X C U. Let V = ([0,¢) x [0,1]) N X. Notice that
V' is an open connected subset of X such that K € V C U. Arguing as in
Case 1, we reach a contradiction.

By Cases 1 and 2, we find that K C {0} x [0, 1].

We now prove that (0,0) ¢ K. Assume that (0,0) € K. Then K =
{0} x [0, with @ < 1. Let ¢ > 0 be such that « + ¢ < 1 and V =
([0,e) x [0,a+e))NX CU.

The following claim is easy to prove.

CramM 3. If C is a component of cl(V), then C = {0} x [0,a + €] or
C=A{(t, fx(t) : t € [u,v]} for some 0 <u<v<e.

We prove the following claim.

Cramm 4. If {Cr}2, is a sequence of components of cl(V') such that
lim, 00 C,, = C and CN K # 0, then (0,a) € C.

Let (0,¢) € CN K. By the Boundary Bumping Theorem, C,, NBd(V') # ()
for every r € N. Since Bd(V') C (({e} x [0, +¢]) U ([0,¢] x {a+¢€}))N X,
by Claim |3] without loss of generality we can assume that C, N Bd(V) C
[0,e] x {a+¢€} for all » € N. Moreover, we can assume that C, = {(¢, fx(¢)) :
t € [up,vy]} for some u, < v, < e such that fx(u,) = fx(v,) = a+ ¢ and
lim, o v, = 0. Hence, (0, + ¢) € C. On the other hand, since (0,¢) € C,
we have {0} X [¢,a + €] C C. Therefore, (0,a) € C and Claim [4]is proved.

By Remark there exist E, F' € C(X) and two sequences {E,}7°,
{F;}22, of components of cl(V') converging to E and F, respectively, such
that ENK ¢ F and FNK ¢ E. By Claim[4, (0,«) € E and (0,a) € F. By
Claim[3| E, F C {0} x [0, a+¢]. Since K = {0} x [0,a], ENK and FNK are
subcontinua of K containing (0,«). So, ENK C FNK or FNK C ENK.
This is a contradiction. Therefore (0,0) ¢ K.

In a similar way, (0,1) ¢ K.

Since (0,0) ¢ K and (0,1) ¢ K, there are 0 < a < § < 1 such that K =
{0} x [, B]. Define V = ([0,¢) x (¢/, 8')) N X for some € > 0, &/ € (0, ) and
B € (B,1), so that K C V C U. By Remark there exist E, F € C(X)
and two sequences {E,}22,, {F,}>2, of components of cl(V') converging to
E and F, respectively, such that ENK ¢ F and FNK ¢ E. As in Claim [3]
without loss of generality we can assume that E, = {(¢, fx(t)) : t € [zy, 2,]}
for some x, < z,, and F, = {(¢t, fx(t)) : t € [uy,w,|} for some u, < w,, with
lim, o0 2 = 0 and lim,_, w, = 0. Moreover, as in the proof of Claim
we can also assume that fx(u,) = fx(w,) = B, fx(z;) = fx(zr) = &,
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E = {0} x [/, 4], and F = {0} x [y, p'] for some ¢ € [«,3) and v € (a, f].
Hence, (0,a) € E and (0,3) € F.

Consider n € N such that 5/n < min{c/,1 - ',a — o/, 8 — 8} and o/n,
f'n, dn, yn are not integers. Define i = min{m € N : m/n > o'}, k =
min{m € N:m/n >0}, j=min{m € N: m/n >}, and | = min{m € N :
m/n > ('}, Notice that n > 5, 5 < j,k < n—>5,47 < min{j,k} — 4, and
I > max{j, k} + 4.

Since F, and F, are components of cl(V) and [¢/, ] C (%,%), we
see that fy ([7,, 2]), fx ([ursw,]) € (21, L), Further, as lim, oo B, = E =

n 'n

{0} x [o/,8] C {0} x (=1, %) and limyo0 B = F' = {0} x [, 8] C {0} x
(%, %), we have lim, o fx([r, 2/]) = [/, 8] and lim, o fx ([ur, w,]) =
[v, B']. So, without loss of generality we can suppose that fx([z,,z]) C

(52 5) and fx([urw,]) C (55, 4).
For each r € N define y, € [z,, ;] and v, € [u,, w,] such that fx(y,) =
max {fx(t) : t € [xy,2,]} and fx(v,) = min{fx(¢) : t € [u,,w,]}. Hence,
fx([zr, z]) = &, fx(yr)] and fx([ur, wy]) = [fx(vy), B]. So,
lim fX(yr) =0 and lim fX(U’I‘) =7
r—00 r—>00
We can conclude that for each a € (0, 1], there exists » € N such that

(1) 0<up <vp <wyr <a, fx(u), fx(w) e AL, fx(v) e AL, fx([ur,w])
C Ulm:j AT and

2) 0 <z < yr < 2 < a, fx(2,),fx(z:) € AL, fx(y,) € AF and
Ix([zr, 2]) C Ufn:l A m

4. Characterization of semi-Kelley compactifications with re-
mainder being a simple closed curve. Let S' be the standard unit circle
in R2. Following Nadler [12] p. 321], let (SP); = ST U {(1 +1/t)e* : t > 1}.
A continuum X is called a X'-continuum if X is a compactification of (0, 1]
with remainder being a simple closed curve.

We start this section with a lemma (compare to [I12, (3.1) Lemmal).

LEMMA 4.1. Let X be a X-continuum. Then X can be embedded in R? in
such a way that the remainder is S* and X \ S* = {(1 +t)gx(t) : t € (0,1]}
for some continuous function gx : (0,1] — S*.

Proof. By [12 (4.4) Lemma, p. 336], we may assume X is embedded
in R? with remainder S', and moreover X does not contain the origin. Let
h : H — (0,1] be a homeomorphism where H = X \ S! € R2. Define a
function g : X — R? by

(1) (z,9) if (z,y) € S7,
g\T,y) = z .
(1+ h(@,y) [y if () € H.
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We now prove that g is injective. Let (a,b),(z,y) € X be such that
g(a,b) = g(z,y). If (a,b) € S' and (z,y) € H, then h(z,y) = 0, which
contradicts the definition of A, so this case is impossible. If (a, b), (x,y) € S,
then clearly (a,b) = (z,y). If (a,b), (x,y) € H, then h(a,b) = h(x,y); since
h is injective, (a,b) = (x,y). Hence, g is injective.

Since the domain of g is compact, g is a homeomorphism onto its image.
Define gx : (0,1] — St by gx(t) = HZ%EE;H Since h is a homeomorphism and
H does not contain the origin, the function gx is well-defined and continuous.
Notice that g(X)\ S* = {(1+ h(z,y)) ng ygll (z,y) € H} = {(1+t)gx(t):
t € (0,1]}. Hence, g(X) is the required embedding and gx is the required
function. m

For the rest of this paper, a Y-continuum X and a map gx : (0,1] — S*
will always be considered as in Lemmal[4.1] Notice that since X is a compact-
ification of (0, 1], for each p € St there exists a decreasing sequence {t,,, }2°_,

n (0, 1] converging to 0 such that lim,, oo gx (tm) = p. Given k,n € N, let
Bl ={e:te [k 27, 2]2271'” and D, = {B}, :i € {1,...,2"}}.

The following result generalizes [2, Theorem 4.1, p. 107].

THEOREM 4.2. Let X be a X-continuum. Then the following statements
are equivalent:

(1) For each n € N, there exists r(n) € (0,1] such that for each k €
{1,...,2"}, if s <t < r(n) and gx(s),gx(t) € BE, then gx([s,t]) N B},
is nonempty for all j € {1,...,2"} or gX([ ,t]) is contained in the union
of three elements of D,,.

(2) X is homeomorphic to (SP);.

(3) X is a semi-Kelley continuum.

Proof. (1)=(2) is a straightforward application of [12, (4.5) Lemma,
p. 336, and (2)=-(3) is clear.

We prove (3)=-(1). Assume (3) holds and that (1) does not hold. Hence,
there exists n € N such that for each r € (0,1] there exist k € {1,...,2"}
and s < t < r with gx(s),g9x(t) € BE, gx([s,t]) N B} = 0 for some
j€{1,...,2"} and gx([s, t]) is not contained in the union of three elements
of D,,. Therefore for each m € N, there exist k(m),j(m) € {1,...,2"} and
there exist 0 < s(m) < t(m) < 1/m such that gx(s(m)), gx (t(m )) e K™,
gx([s(m),t(m)]) N BI™ = ¢ and gx([s(m),t(m)]) is not contained in the
union of three elements of D,,. By passing to a subsequence if necessary,
we may assume that t(m + 1) < s(m) and k(m), j(m) are constant se-
quences such that k(m) = k and j(m) = j for every m € N. Without
loss of generality we may also assume that k& = 1. Moreover, assume that
lim,,, 00 gx (5(m)) = p and lim,, o0 gx (t(m)) = ¢ for some points p, g € BL.
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Since gx (s(m)) € Bl and gx ([s(m), t(m)]) is connected and not contained in
the union of three elements of D,,, we find that gy ([s(m),t(m)])NB: # @ for
i =2,3or for i = 2" —1,2". We can clearly assume that gx ([s(m),t(m)]) N
B2 # () and gx ([s(m),t(m)]) N B3 # § for each m € N.

Since gx : (0,1] — S! is continuous and (0, 1] is contractible, the function
gx is homotopic to a constant function & : (0,1] — S*. Since & has a lifting,
by [7, Proposition 1.30] there is a lifting G : (0,1] — R of gx, that is,
gx (t) = e¢® for each t € (0,1].

Let m € N. Since gx([s(m),t(m)]) N B} = 0, we have |G(s(m)) —
G(t(m))| < 2m/2".

Let u(m) € [s(m),t(m)] be such that G(u(m)) = max G([s(m),t(m)])
and let v(m) € [u(m + 1), u(m)] with G(v(m)) = min G([u(m + 1), u(m)]).

As gx([s(m),t(m)]) N B3 # 0, we find that G(u(m)) — G(s(m)) > 27 /2"
and G(u(m)) — G(t(m)) > 27 /2". Notice that G(u(m)) — G(v(m)) > 2m /2"

and G(u(m + 1)) — G(v(m)) > 2w /2".
We can assume that lim,, o gx(u(m)) = z and limy, o0 gx(v(Mm)) =y
for some points z,y € S*. To end the proof, consider the following two cases:

(I+u(m)) g(u(m))

(1+7(m) g (v(m)), \/ /
Y

(14-8(m)) gy(8(m)

(I+a(m)) (m))

(1+B(m))1\([3(m))
(14-0(m))g(v(m))

(I+u(m+1))g(uw(m+1))

(L4-5(m)) g, (s(m))

(14t(m)) g.((m))
(I+t(m+1)) g (t(m+1))

Fig. 3. Sets used in Case 1

CAsE 1: x = y. For each m € N, define points a(m), B(m), v(m), and
d(m) as follows:

a(m) = min {t € [u(m),t(m)] : G(t) = G(u(m)) — 2w /2" 1},
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B(m) = max {t € [s(m),u(m)] : G(t) = G(u(m)) — 27 /2" "},

(m) = min {t € [v(m),u(m)] : G(t) = G(v(m)) + 2m/2" 1},
§(m) = max {t € [u(m + 1),v(m)] : G(t) = G(v(m)) + 2x/2" 1}
Define Ly, = {(1+1t)gx(t) : t € [B(m),a(m)]|} C X and J,,, = {(1+1t)gx(t) :
t € [6(m),y(m)]} (see Figure [3). By the definitions, lim,, oo L,, = L for
some subarc L C S! of arc length 27/ 27+ with endpoint z, limy,—ye0 Jpm = J
for some subarc J C S' of arc length 27/2"*! with endpoint z, and

LNJ={x} Let K = LUJ. Then L and J are incomparable maximal
limit continua of K in X.

) =
) =

2

(1+u(m)) g(u(m))—7

(1+1(m)) g.(t(m))

(1+#(m+1)) gy(t(m+1))

(14+0(m)) g.(v(m))
hN
J,

Fig. 4. Sets used in Case 2

CASE 2: x # y. For each m € N, put L,,, = {(14+u(m))gx(u(m))} C X,
Jm = {1 +v(m))gx(v(m))} C X, L = {z} and J = {y}. Let t,,t, € R
be such that x = e'=, y = eiv and t, € [t,,t, + 27]. Finally, we define
K = {e € St : t € [ty,ty]} (see Figure . By definitions, limy, oo Ly, = L,
limy, 00 J = J, L,J € C(K), and L, J are incomparable maximal limit
continua of K in X.

In both cases X is not a semi-Kelley continuum. =

PROBLEM 4.3. Let X be a solenoid. Is it true that there is a unique
semi-Kelley compactification with remainder X ¢

PROBLEM 4.4. For which semi-Kelley continua X there is a unique semi-
Kelley compactification with remainder X ?
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5. There is no semi-Kelley compactification with remainder be-
ing a triod. A continuum 7' is called a triod if there is a subcontinuum H
of T such that T'\ H is the union of three nonempty sets any two of which
are mutually separated in T [13, Definition 11.22, p. 208|.

THEOREM 5.1. Let X be a continuum. Assume that there exist an open
set V.C X, atriod T CV, a sequence {E,}2°, of components of cl(V),
and a sequence {T,,}>°, of pairwise disjoint arcs converging to T such that

T, C E, and each point of T, disconnects E,. Then X is not a semi-Kelley
continuum.

Proof. We will use Theorem Let W be an open subset of X such
that T'C W C cl(W) C V. Since T is a triod, there exists a subcontinuum
H of T such that T'\ H is the union of three nonempty sets I, J, L, any two
of which are mutually separated in T

Fix pointsa € I, b€ J, c € L. Put
e =min{d(a, HUJUL),d(b,HUIUL),d(c, HUIUJ)}/4.

Choose k € N so that + < € and cl(B(%,a))Ucl(B(z,b))Ucl(B(f,¢)) C W.
Since lim,, oo T, =T, vvemayass.umeB(kL )ﬂT #0, B(k+6, )ﬂTn%Q),
and B(k+6, )OT # () for every n € N.

Pt ~

B(1/(k+3),a) /:,:;_‘,.----.Z:::;:\\
R ’/ s\\‘ \‘\
1/(k+2),0) £ & S
M i a by
H . i
B(1/(k+1),a) AL p, HE

B(1/ka)

S
S

Fig. 5. Sets used in Theorem [5.]
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Given p,q € Ty, let pq denote the arc in T, with endpoints p and q.

For each n € N, choose p,, € TgnﬁB(k+3, ) and g, € To, N (B(k_l%,b) U
B(k+3, )) such that p,¢q, intersects exactly one of B(k+3 , b) and B(k+3, )

We may assume ¢, GB(k+3,b) andpnqnﬁB(k+3, ) = () for each n € N.

For each n € N, choose =, € Tp,41 N B(k+6, ) and yp, € Tont1 N
(B(%H, a) UB(%, b)) such that z, ¥, intersects exactly one of B(k,JrQ7 ) and
B(%, b) (see Figure . We may assume y,, € B( ) and T,Yn ﬂB( b) =0
for each n € N.

Define K as the component of cI(W)\ (B(%,a) UB(k+1’b) UB(k+47 c))
that contains H and also define U = V' \ (cl( (k+17 )) cl(B(kJrQ,b)) U
cl(B(k%n,), c))) By definition, U is an open set of X so that K C U. Now, we
will construct convergent sequences {A4,}°°, and {B,}52, of components
of cl(U) such that lim, o 4, = A, lim, 00 B, = B, AN K ¢ B, and
BNK ¢ A.

For each n € N, define the natural order < of the arc T;, for which p,, < g,
and z,, < yp.

Define ¢, = min {t € ppgn : t € cl(B(k}H, b))} and p}, = max {t € pnq, :
tEcl(B( ))} Thus, pnancl(V)\(B( )UB(k+1,b)UB(k+4, c)) C
cl(U). Hence pha, C cl(U) Let A,, be the component of cl(U) such that
pLq, C A,. Since A, is a connected subset of cl(V) and A, N Ea, # 0,
we have A, C Ea,. Since p,, g, disconnect Fs, and py,q, ¢ cl(U), we see
that A,, C ppgn. Then A, N B(k+37 ) = (). Assume that lim,_, A4, = A,
for some A € C(X). Since A, ﬂB(k+3, ¢) = 0 for ecach n € N, we have
AN B(k+37 ) = (). Thus, Aﬂcl(B(k+4, )) = (. Since lim, oo Ty, = T
and A, C pnqn C Ty, for each n € N, we have A C T. Assume that
limy, 00 P, = P/, limy, 00 ¢, = ¢/, and lim,, o0 pl,ql, = A’, for some p/, ¢’ € A
and A’ € C(A). Notice that p' € TNcl(B(%,a)) and ¢’ G TNel(B (k+1’b))
Then p’ € I and ¢’ € J. Hence, A'/NH # (). Therefore, A’ C K, p',¢ € ANK,
and AN CI(B(%M,C)) = 0.

Now, define y/, = min {t € Tpyn it € cl(B(%,a))} and 2], = max {t €
Toyy  t € A(B(ggc ))} Hence7 xhyh, C cl(U). Let B, be the compo-
nent of cl(U) such that z/,y/, C By,. As in the previous paragraph, we can
assume that lim, . B, = B, for some B C T. Further, lim,,_, 2], = 2’
and lim,, . y,’1 =y with 2/ € TNcl(B (k+4’ ¢)) and y € TNcl(B (% a)).
Moreover, 2’,y € BN K and Bﬂcl(B(kH, b)) = 0.

By definitions, ¢’ € (ANK)\ B and 2’ € (BNK)\ A. Hence, by Theorem
2] X is not semi-Kelley. =

k+2°

COROLLARY 5.2. Let X =Y U (0,1] be a compactification of (0,1] with
remainder Y. If T is a triod contained in Y and there exists a sequence



338 M. CHACON-TIRADO ET AL.

{T,}>2, of pairwise disjoint arcs in (0, 1] converging to T, then X is not a
semi-Kelley continuum.

Proof. By Theorem for V.= X and E, = X for every n € N, X is
not a semi-Kelley continuum. =

COROLLARY 5.3. Let T be a triod and X = TU(0, 1] be a compactification
of (0, 1] with remainder T. Then X is not a semi-Kelley continuum.

6. Semi-Kelley compactifications with remainder being a Peano
continuum. In this section we study the semi-Kelley compactifications with
remainder being a Peano continuum. First, we recall the following theorem
which characterizes the Peano continua that are not triods.

o—- OO OO ©

Fig. 6. Noose Fig. 7. Eight Fig. 8. Dumbbell Fig. 9. Theta

THEOREM 6.1 ([10, Theorem 3.10, p. 536]). If G is a Peano continuum
that is not a triod, then G is one of the following objects: an arc, a sim-
ple closed curve, a noose (Figure @, a figure eight (Figure @, a dumbbell
(Figure[§), or a theta curve (Figure D).

THEOREM 6.2. Let G be a Peano continuum and X = G U (0,1] be a
compactification of (0, 1] with remainder G. If X is a semi-Kelley continuum,
then G is an arc or a simple closed curve.

Proof. Assume that X = GU(0, 1] is a semi-Kelley continuum. By Corol-
lary G is not a triod. By Theorem G is one of the following objects:
an arc, a simple closed curve, a noose, a figure eight, a dumbbell, or a letter
theta. We will prove that G is not a noose, a figure eight, a dumbbell, or a
letter theta.

CASE 1: GG is a noose. Suppose that G = S U L, where S is a simple
closed curve, L is an arc with endpoints v and v, and SNL = {v}. Let Y be
the continuum obtained by identifying all points of L to a single point and let
m: X — Y be the quotient map. Notice that Y is a Y'-continuum. Since 7 is
monotone, by [6, Theorem 8, p. 311], Y is a semi-Kelley continuum. Hence, by
Theorem Y is homeomorphic to (SP)1, so Y is a Kelley continuum. Let
S C Y be the remainder of Y and let (0,1]y = Y\ S!. Let A C S* be an arc
such that 7(v) € A and 7(v) is not an endpoint of A. Moreover, let {u,}>2
be a sequence of points in (0,1] such that lim, . u, = u. Since Y is a
Kelley continuum and lim,,_,o m(uy) = 7(u) = 7(v), there exists a sequence
{A,}5°, of arcs in (0, 1]y such that lim, . A, = A and 7(uy) € A, for
each n € N. By definition of 7, we find that {7~(4,)}32, is a sequence of
arcs in (0, 1]. Without loss of generality assume that lim,, o, 7 1(A,) = T
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for some subcontinuum 7" of G. Notice that 7(T') = A and u,v € T'. Hence,
T is a triod. By Corollary X is not a semi-Kelley continuum, which
contradicts our assumption.

CASE 2: G is a figure eight. Suppose that G = SUR, where S and R are
simple closed curves such that SN R = {v}. Let u € R be such that u # v
and let {u,}7° ; be a sequence of points in (0, 1] such that lim,_,. u, = u.
Let Y be the continuum obtained by identifying all points of R to a single
point and let 7 : X — Y be the quotient map. As in Case 1, we find that
Y is homeomorphic to (SP); = S* U (0,1]y, so Y is a Kelley continuum.
Let A C S! be an arc such that 7(v) € A and 7(v) is not an endpoint of A.
Since Y is a Kelley continuum and lim, o m(u,) = 7(u) = mw(v), there
exists a sequence {A,}>°, of arcs in (0, 1]y such that lim,_,. 4, = A and
7(up) € A, for each n € N. By definition of 7, {7~1(A,)}>, is a sequence
of arcs in (0,1]. Assume that lim, . 7 1(A,) = T for some subcontinuum
T of G. Notice that 7(7T) = A and u,v € T. Hence, T is a triod. By Corollary
[b.2] X is not a semi-Kelley continuum, which contradicts our assumption.

CASE 3: G is a dumbbell. Suppose that G = SULU R, where S and R are
disjoint simple closed curves, L is an arc with end points v and v, SNL = {u},
and RN L = {v}. Let Y be the continuum obtained by identifying all points
of R to asingle point and let 7 : X — Y be the quotient map. Notice that Y is
a compactification of (0, 1] with remainder being a noose. By [0, Theorem 8,
p. 311], Y is a semi-Kelley continuum, in contradiction with Case 1.

CASE 4: G is a letter theta. Suppose that G = LU JU K, where L, J and
K are arcs with endpoints v and v such that LNJ = LNK = JNK = {u,v}.
Let Y be the continuum obtained by identifying all points of J to a single
point and let 7 : X — Y be the quotient map. Notice that Y is a compactifi-
cation of (0, 1] with remainder being a figure eight. By [6, Theorem 8, p. 311],
Y is a semi-Kelley continuum, in contradiction with Case 2.

The proof concludes by observing that G is an arc or a simple closed
curve. m

R. Beane and W. J. Charatonik proved that if X is an arc-like Kelley
continuum then X is a Kelley remainder [2, Theorem 2.3, p. 105]. M. E.
Chacon-Tirado proved that if X is a circle-like Kelley continuum then X is
a Kelley remainder [4, Theorem 1, p. 170]. The following question is natural.

PROBLEM 6.3. Let X be an arc-like or circle-like semi-Kelley continuum.
Is X a semi-Kelley remainder?
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