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Abstract. We characterize the semi-Kelley compactifications of (0, 1] with remain-
der being an arc or a simple closed curve. We also prove that there are no semi-Kelley
compactifications of (0, 1] with remainder being a triod. Finally, we prove that if X is a
semi-Kelley compactification of (0, 1] with remainder being a Peano continuum G, then
G is an arc or a simple closed curve.

1. Introduction. A continuum is a compact connected metric space
with more than one point. A subcontinuum of a continuum X is a nonempty
compact connected subset of X, so one point subsets of X are subcontinua
ofX. Given a continuumX, we consider the hyperspace C(X) of subcontinua
of X with the Hausdorff metric H (see [9, Definition 2.1, p. 11]).

A continuum X is said to be a Kelley continuum provided that for each
point p ∈ X, for each subcontinuum K of X containing p, and for each
sequence {pn}∞n=1 in X converging to p, there exists a sequence {Kn}∞n=1 of
subcontinua of X converging to K such that pn ∈ Kn for every n ∈ N.

Let K be a subcontinuum of a continuum X. A continuum M ⊂ K is
called a maximal limit continuum ofK in X if there is a sequence {Mn}∞n=1

of subcontinua of X converging to M such that for each convergent se-
quence {M ′n}∞n=1 of subcontinua of X with Mn ⊂ M ′n for each n ∈ N, and
limn→∞M

′
n = M ′ ⊂ K, we have M ′ = M . A continuum X is said to be a

semi-Kelley continuum if for each subcontinuum K of X and for any two
maximal limit continua L and M of K in X, either L ⊂M or M ⊂ L.

Kelley continua were introduced by J. L. Kelley [11] and they have been
useful in the study of contractibility of hyperspaces and in the study of ho-
mogeneous continua. Semi-Kelley continua were introduced by J. J. Chara-
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tonik and W. J. Charatonik [5] as a weaker version of Kelley continua. The
authors of [5] generalized several results known for Kelley continua to semi-
Kelley continua concerning products, hyperspaces, and mapping properties.
For instance, they proved that if a Cartesian product of two nondegenerate
continua is semi-Kelley, then each factor continuum is Kelley [5, Theorem
4.1, p. 80], but the converse does not hold [5, Example 4.3, p. 81]. In [3],
E. Castañeda-Alvarado and I. Vidal-Escobar answered questions posed by
J. J. Charatonik, W. J. Charatonik, and A. Illanes by constructing a Kelley
continuum X such that neither X × [0, 1] nor C(X) nor small Whitney lev-
els in C(X) are semi-Kelley continua. Recently, in [8], A. Illanes presented
an equivalent definition of semi-Kelley continua and he used it to generalize
some previous results and to obtain new ones. For more information about
semi-Kelley continua, we refer the reader to [8] and [6].

A Kelley continuum X is a Kelley compactification if it is a compactifica-
tion of (0, 1]. A semi-Kelley continuum X is a semi-Kelley compactification
if it is a compactification of (0, 1]. A continuum X is a Kelley remainder,
respectively semi-Kelley remainder, if it is the remainder of a Kelley compact-
ification, respectively semi-Kelley compactification. Kelley compactifications
were studied in [1, Section 6] and [14, Corollary 7.2, p. 673]; Kelley remainders
were studied in [2] and [4]. G. Acosta andA. Illanes showed that ifX is a Kelley
compactification then X is atriodic and each subcontinuum of X is a Kelley
continuum [1, Theorems 6.2 and 6.3]. P. Pellicer-Covarrubias [14] proved that
a continuumX is hereditarily indecomposable if and only if for each compact-
ification Z of (0, 1] with remainder X, Z is a Kelley continuum. R. A. Beane
andW. J. Charatonik showed that arc-like Kelley continua andKelley arc con-
tinua are Kelley remainders [2, Theorems 2.3 and 3.1]. M. E. Chacón-Tirado
proved that circle-like Kelley continua are Kelley remainders [4, Theorem 1,
p. 170]. An interesting problem in this area is to determine which known
results for Kelley remainders can be extended to semi-Kelley remainders.

In this paper we characterize the semi-Kelley compactifications with re-
mainder being an arc or a simple closed curve. A continuum X is called a
triod if there is a subcontinuum Z of X such that X \Z is the union of three
nonempty sets any two of which are mutually separated in X [13, Definition
11.22, p. 208]. We prove that triods are not semi-Kelley remainders. We also
prove that if a Peano continuum G is a semi-Kelley remainder, then G is an
arc or a simple closed curve.

2. Preliminaries. A map is a continuous function. Given a continuum
X with metric d, a point p ∈ X, a nonempty subset A of X, and a positive
real number ε, we define B(ε, p) = {x ∈ X : d(p, x) < ε}, N(ε,A) =⋃
{B(ε, x) : x ∈ A}, and d(p,A) = inf {d(p, x) : x ∈ A}.
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Theorem 2.1 ([8, Theorem 2.1]). Let X be a continuum. Then X is not
a semi-Kelley continuum if and only if there exist a subcontinuum K of X,
an open subset U of X, and sequences {An}∞n=1 and {Bn}∞n=1 of components
of cl(U) converging to respective subcontinua A and B of X such that

(1) K ⊂ U ,
(2) (A ∩K) \B 6= ∅ and (B ∩K) \A 6= ∅.

Remark 2.2. Let X be a continuum. Let A, B, K, U , An, and Bn be
subsets of X for every n ∈ N, as given in Theorem 2.1.

(1) If D is the component of cl(U) that contains K, then K 6⊂ int(D).
(2) If V is an open subset of X such that K ⊂ V ⊂ U , then there exist

E,F ∈ C(X) and two sequences {En}∞n=1, {Fn}∞n=1 of components
of cl(V ) converging to E and F , respectively, such that E ∩ K 6⊂ F
and F ∩K 6⊂ E.
Proof. (1) Assume K ⊂ int(D) and a ∈ A ∩K. Since limn→∞An = A,

there exists an ∈ An, for every n ∈ N, such that limn→∞ an = a. As
a ∈ int(D), there exists m ∈ N such that an ∈ int(D) for all n ≥ m. As
An and D are components of cl(U) that contain an, we have An = D for all
n ≥ m. Hence, A = D. In a similar way, B = D. So (A ∩K) \B = ∅, which
is a contradiction. Therefore, K 6⊂ int(D).

(2) Let a ∈ (A ∩ K) \ B and b ∈ (B ∩ K) \ A. Since limn→∞An = A
and limn→∞Bn = B, there exist an ∈ An and bn ∈ Bn, for every n ∈ N,
such that limn→∞ an = a and limn→∞ bn = b. We can clearly assume that
an, bn ∈ V for all n ∈ N. Let En and Fn be the components of cl(V ) that
contain an and bn, respectively. Then En ⊂ An and Fn ⊂ Bn. Without loss
of generality suppose that limn→∞En = E and limn→∞ Fn = F for some
E,F ∈ C(X). Notice that E ⊂ A, F ⊂ B, a ∈ E∩K, and b ∈ F ∩K. Hence,
E ∩K 6⊂ F and F ∩K 6⊂ E.

Lemma 2.3. Let X = (0, 1]∪Y be a compactification of (0, 1] with remain-
der Y , K be a subcontinuum of Y , and M be a maximal limit continuum of
K in Y . Then M is a maximal limit continuum of K in X.

Proof. Since M is a maximal limit continuum of K in Y , there exists a
sequence {Mn}∞n=1 of subcontinua of Y such that

(1) limn→∞Mn =M ,
(2) for every convergent sequence {M ′n}∞n=1 of subcontinua of Y with

Mn ⊂M ′n, for each n ∈ N we have

if lim
n→∞

M ′n =M ′ ⊂ K then M =M ′.

Let {M ′′n}∞n=1 be a convergent sequence of subcontinua of X withMn ⊂M ′′n ,
for each n ∈ N, and limn→∞M

′′
n =M ′′ ⊂ K. We shall prove that M ′′ =M .
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Case 1. There exist n1 < n2 < · · · such that M ′′nk
∩ (0, 1] 6= ∅ for each

k ∈ N. In this case Y ⊂ M ′′nk
for every k ∈ N, and so Y ⊂ limk→∞M

′′
nk

=
M ′′ ⊂ K ⊂ Y . Hence, Y = K = M ′′. Since Y is the unique maximal limit
continuum of Y in Y , we have Y =M and so M =M ′′.

Case 2. There is N ∈ N such that M ′′n ∩ (0, 1] = ∅ for each n ≥ N . In
this case, we obtain M ′′n ⊂ Y for every n ≥ N . Since M is a maximal limit
continuum of K in Y , it follows that M =M ′′.

In both cases we obtain M = M ′′. Therefore M is a maximal limit
continuum of K in X.

Corollary 2.4. Let X = (0, 1] ∪ Y be a compactification of (0, 1] with
remainder Y . If X is a semi-Kelley continuum, then so is Y .

3. Characterization of semi-Kelley compactifications with re-
mainder being an arc. A continuum X is called an E-continuum if X is
a compactification of (0, 1] with remainder being an arc.

Remark 3.1. If X is an E-continuum, then by [12, (3.1) Lemma, p. 330],
we can consider X embedded in the plane in such a way that the remainder
is {0} × [0, 1] and the rest of the continuum is the graph of a continuous
function fX from (0, 1] to [0, 1].

For the rest of this paper, an E-continuum X and a map fX : (0, 1] →
[0, 1] will always be considered as in Remark 3.1. Given i, n ∈ N, let Ai

n =
[(i− 1)/n, i/n].

Theorem 3.2. Let X be an E-continuum. Then the following statements
are equivalent :

(1) X is not a semi-Kelley continuum.
(2) There exist n, i, j, k, l∈N, with n> 4, 2<j, k <n−1, i< min {j, k}− 1,

l > max {j, k}+ 1 such that for each ε ∈ (0, 1],

(a) there exist 0 < u < v < w < ε such that fX(u), fX(w) ∈ Al
n,

fX(v) ∈ Aj
n and fX([u,w]) ⊂

⋃l
m=j A

m
n , and

(b) there exist 0 < x < y < z < ε such that fX(x), fX(z) ∈ Ai
n,

fX(y) ∈ Ak
n and fX([x, z]) ⊂

⋃k
m=iA

m
n .

Proof. Assume (2) holds and take n, i, j, k, l as given in (2). Let ε ∈ (0, 1].
Define

K = {0} ×
[
min {j, k} − 1

n
− 1

4n
,
max {j, k}

n
+

1

4n

]
,

U =

(
[0, 1]×

(
i

n
+

1

2n
,
l − 1

n
− 1

2n

))
∩X.
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Fig. 1. Sets used in (2)⇒(1), assuming j < k

Notice that K ⊂ U . By hypothesis, we can define six sequences of points
in (0, ε), {ur}∞r=1, {vr}∞r=1, {wr}∞r=1, {xr}∞r=1, {yr}∞r=1, and {zr}∞r=1 converg-
ing to 0 such that wr+1 < xr < yr < zr < ur < vr < wr for each r ∈ N.
Further ur, vr, and wr satisfy (a), and xr, yr, and zr satisfy (b). For all
r ∈ N, let Br and Ar be the components of cl(U) that contain (vr, fX(vr))
and (yr, fX(yr)), respectively (see Figure 1). The following claim is clear.

Claim 1. If D ∈ C(X), 0 < p ≤ q ≤ 1, and (p, fX(p)), (q, fX(q)) ∈ D,
then {(t, fX(t)) : t ∈ [p, q]} ⊂ D.

We prove the following claim.

Claim 2. If (t, fX(t)) ∈ Ar, then t ∈ [xr, zr].

Let t ∈ (0, 1] be such that (t, fX(t)) ∈ Ar. Assume that t > zr. By the
Intermediate Value Theorem, there exists γ ∈ [yr, zr] such that fX(γ) = i/n.
By Claim 1, (γ, i/n) ∈ Ar. We have the required contradiction, since Ar ⊂
cl(U) ⊂ [0, 1]×

[
i
n + 1

2n ,
l−1
n −

1
2n

]
. In a similar way, we find a contradiction

if t < xr.
By Claim 2, Ar ⊂ {(t, fX(t)) : t ∈ [xr, zr]} ⊂ [xr, zr]×

[
i
n + 1

2n ,
k
n

]
. In a

similar way, Br ⊂ [ur, wr]×
[ j−1

n , l−1n −
1
2n

]
. By the Boundary Bumping The-
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orem, there exist pr ∈ [xr, zr] and qr ∈ [ur, wr] such that
(
pr,

i
n + 1

2n

)
∈ Ar

and
(
qr,

l−1
n −

1
2n

)
∈ Br for each r ∈ N. By the Intermediate Value Theorem,

there exist αr ∈ [xr, zr] and βr ∈ [ur, wr] such that fX(αr) =
min {j,k}−1

n − 1
4n

and fX(βr) =
max {j,k}

n + 1
4n for each r ∈ N.

We can clearly assume that limr→∞Ar = A and limr→∞Br = B for some
A,B ∈C(X). Notice that A⊂{0}×

[
i
n +

1
2n ,

k
n

]
and B⊂{0}×

[ j−1
n , l−1n −

1
2n

]
.

Moreover
(
0, min {j,k}−1

n − 1
4n

)
∈ (A ∩ K) \ B and

(
0, max {j,k}

n + 1
4n

)
∈

(B ∩K) \A. By Theorem 2.1, X is not a semi-Kelley continuum.
Now, assume (1) holds. By Theorem 2.1, there exist subcontinua A,B,

and K of X, an open subset U of X, and sequences {Ar}∞r=1, {Br}∞r=1 of
components of cl(U) converging to A and B, respectively, such that K ⊂ U ,
A ∩ K 6⊂ B, and B ∩ K 6⊂ A. Notice that K 6= X. Let graph(fX) =
{(a, fX(a)) ∈ R2 : a ∈ (0, 1]}. Consider the following two cases.
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Fig. 2. Sets used in (1)⇒(2), assuming δ < γ

Case 1: K ⊂ graph(fX). Since the points of K are points of local con-
nectedness of X, there exists an open connected subset V of X such that
K ⊂ V ⊂ U . By Remark 2.2, there exist E,F ∈ C(X) and two sequences
{Er}∞r=1, {Fr}∞r=1 of components of cl(V ) converging to E and F , respec-
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tively, such that E ∩K 6⊂ F and F ∩K 6⊂ E (see Figure 2). Since cl(V ) is a
connected set, Er = cl(V ) = Fr for all r ∈ N. Hence, E = cl(V ) = F . This
contradicts the fact that F ∩K 6⊂ E.

Case 2: {0} × [0, 1] ⊂ K. Since K 6= X, there exists 0 < ε < 1 such
that K ⊂ ([0, ε)× [0, 1]) ∩X ⊂ U . Let V = ([0, ε)× [0, 1]) ∩X. Notice that
V is an open connected subset of X such that K ⊂ V ⊂ U . Arguing as in
Case 1, we reach a contradiction.

By Cases 1 and 2, we find that K ( {0} × [0, 1].
We now prove that (0, 0) /∈ K. Assume that (0, 0) ∈ K. Then K =

{0} × [0, α] with α < 1. Let ε > 0 be such that α + ε < 1 and V =
([0, ε)× [0, α+ ε)) ∩X ⊂ U .

The following claim is easy to prove.

Claim 3. If C is a component of cl(V ), then C = {0} × [0, α + ε] or
C = {(t, fX(t)) : t ∈ [u, v]} for some 0 < u ≤ v ≤ ε.

We prove the following claim.

Claim 4. If {Cr}∞r=1 is a sequence of components of cl(V ) such that
limr→∞Cr = C and C ∩K 6= ∅, then (0, α) ∈ C.

Let (0, c) ∈ C∩K. By the Boundary Bumping Theorem, Cr∩Bd(V ) 6= ∅
for every r ∈ N. Since Bd(V ) ⊂ (({ε} × [0, α+ ε]) ∪ ([0, ε]× {α+ ε})) ∩X,
by Claim 3, without loss of generality we can assume that Cr ∩ Bd(V ) ⊂
[0, ε]×{α+ε} for all r ∈ N. Moreover, we can assume that Cr = {(t, fX(t)) :
t ∈ [ur, vr]} for some ur < vr ≤ ε such that fX(ur) = fX(vr) = α + ε and
limr→∞ vr = 0. Hence, (0, α + ε) ∈ C. On the other hand, since (0, c) ∈ C,
we have {0} × [c, α+ ε] ⊂ C. Therefore, (0, α) ∈ C and Claim 4 is proved.

By Remark 2.2, there exist E,F ∈ C(X) and two sequences {Er}∞r=1,
{Fr}∞r=1 of components of cl(V ) converging to E and F , respectively, such
that E ∩K 6⊂ F and F ∩K 6⊂ E. By Claim 4, (0, α) ∈ E and (0, α) ∈ F . By
Claim 3, E,F ⊂ {0}× [0, α+ε]. Since K = {0}× [0, α], E∩K and F ∩K are
subcontinua of K containing (0, α). So, E ∩K ⊂ F ∩K or F ∩K ⊂ E ∩K.
This is a contradiction. Therefore (0, 0) /∈ K.

In a similar way, (0, 1) /∈ K.
Since (0, 0) /∈ K and (0, 1) /∈ K, there are 0 < α ≤ β < 1 such that K =

{0}× [α, β]. Define V = ([0, ε)× (α′, β′))∩X for some ε > 0, α′ ∈ (0, α) and
β′ ∈ (β, 1), so that K ⊂ V ⊂ U . By Remark 2.2, there exist E,F ∈ C(X)
and two sequences {Er}∞r=1, {Fr}∞r=1 of components of cl(V ) converging to
E and F , respectively, such that E ∩K 6⊂ F and F ∩K 6⊂ E. As in Claim 3,
without loss of generality we can assume that Er = {(t, fX(t)) : t ∈ [xr, zr]}
for some xr < zr, and Fr = {(t, fX(t)) : t ∈ [ur, wr]} for some ur < wr, with
limr→∞ zr = 0 and limr→∞wr = 0. Moreover, as in the proof of Claim 4,
we can also assume that fX(ur) = fX(wr) = β′, fX(xr) = fX(zr) = α′,
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E = {0} × [α′, δ], and F = {0} × [γ, β′] for some δ ∈ [α, β) and γ ∈ (α, β].
Hence, (0, α) ∈ E and (0, β) ∈ F .

Consider n ∈ N such that 5/n < min {α′, 1− β′, α− α′, β′ − β} and α′n,
β′n, δn, γn are not integers. Define i = min {m ∈ N : m/n > α′}, k =
min {m ∈ N : m/n > δ}, j = min {m ∈ N : m/n > γ}, and l = min {m ∈ N :
m/n > β′}. Notice that n > 5, 5 < j, k < n − 5, i < min {j, k} − 4, and
l > max {j, k}+ 4.

Since Er and Fr are components of cl(V ) and [α′, β′] ⊂
(
i−1
n , l

n

)
, we

see that fX([xr, zr]), fX([ur, wr]) ⊂
(
i−1
n , l

n

)
. Further, as limr→∞Er = E =

{0} × [α′, δ] ⊂ {0} ×
(
i−1
n , kn

)
and limr→∞ Fr = F = {0} × [γ, β′] ⊂ {0} ×( j−1

n , l
n

)
, we have limr→∞ fX([xr, zr]) = [α′, δ] and limr→∞ fX([ur, wr]) =

[γ, β′]. So, without loss of generality we can suppose that fX([xr, zr]) ⊂(
i−1
n , kn

)
and fX([ur, wr]) ⊂

( j−1
n , l

n

)
.

For each r ∈ N define yr ∈ [xr, zr] and vr ∈ [ur, wr] such that fX(yr) =
max {fX(t) : t ∈ [xr, zr]} and fX(vr) = min {fX(t) : t ∈ [ur, wr]}. Hence,
fX([xr, zr]) = [α′, fX(yr)] and fX([ur, wr]) = [fX(vr), β

′]. So,

lim
r→∞

fX(yr) = δ and lim
r→∞

fX(vr) = γ.

We can conclude that for each a ∈ (0, 1], there exists r ∈ N such that

(1) 0 < ur < vr < wr < a, fX(ur), fX(wr) ∈ Al
n, fX(vr) ∈ Aj

n, fX([ur, wr])

⊂
⋃l

m=j A
m
n , and

(2) 0 < xr < yr < zr < a, fX(xr), fX(zr) ∈ Ai
n, fX(yr) ∈ Ak

n and
fX([xr, zr]) ⊂

⋃k
m=iA

m
n .

4. Characterization of semi-Kelley compactifications with re-
mainder being a simple closed curve. Let S1 be the standard unit circle
in R2. Following Nadler [12, p. 321], let (SP )1 = S1 ∪ {(1 + 1/t)eit : t ≥ 1}.
A continuum X is called a Σ-continuum if X is a compactification of (0, 1]
with remainder being a simple closed curve.

We start this section with a lemma (compare to [12, (3.1) Lemma]).

Lemma 4.1. Let X be a Σ-continuum. Then X can be embedded in R2 in
such a way that the remainder is S1 and X \ S1 = {(1 + t)gX(t) : t ∈ (0, 1]}
for some continuous function gX : (0, 1]→ S1.

Proof. By [12, (4.4) Lemma, p. 336], we may assume X is embedded
in R2 with remainder S1, and moreover X does not contain the origin. Let
h : H → (0, 1] be a homeomorphism where H = X \ S1 ⊂ R2. Define a
function g : X → R2 by

g(x, y) =

{
(x, y) if (x, y) ∈ S1,

(1 + h(x, y)) (x,y)
‖(x,y)‖ if (x, y) ∈ H.
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We now prove that g is injective. Let (a, b), (x, y) ∈ X be such that
g(a, b) = g(x, y). If (a, b) ∈ S1 and (x, y) ∈ H, then h(x, y) = 0, which
contradicts the definition of h, so this case is impossible. If (a, b), (x, y) ∈ S1,
then clearly (a, b) = (x, y). If (a, b), (x, y) ∈ H, then h(a, b) = h(x, y); since
h is injective, (a, b) = (x, y). Hence, g is injective.

Since the domain of g is compact, g is a homeomorphism onto its image.
Define gX : (0, 1]→ S1 by gX(t) = h−1(t)

‖h−1(t)‖ . Since h is a homeomorphism and
H does not contain the origin, the function gX is well-defined and continuous.
Notice that g(X) \ S1 =

{
(1 + h(x, y)) (x,y)

‖(x,y)‖ : (x, y) ∈ H
}
= {(1 + t)gX(t) :

t ∈ (0, 1]}. Hence, g(X) is the required embedding and gX is the required
function.

For the rest of this paper, a Σ-continuum X and a map gX : (0, 1]→ S1

will always be considered as in Lemma 4.1. Notice that since X is a compact-
ification of (0, 1], for each p ∈ S1 there exists a decreasing sequence {tm}∞m=1

in (0, 1] converging to 0 such that limm→∞ gX(tm) = p. Given k, n ∈ N, let
Bk

n =
{
eit : t ∈

[
k−1
2n 2π, k

2n 2π
]}

and Dn =
{
Bi

n : i ∈ {1, . . . , 2n}
}
.

The following result generalizes [2, Theorem 4.1, p. 107].

Theorem 4.2. Let X be a Σ-continuum. Then the following statements
are equivalent :

(1) For each n ∈ N, there exists r(n) ∈ (0, 1] such that for each k ∈
{1, . . . , 2n}, if s ≤ t ≤ r(n) and gX(s), gX(t) ∈ Bk

n, then gX([s, t]) ∩ Bj
n

is nonempty for all j ∈ {1, . . . , 2n} or gX([s, t]) is contained in the union
of three elements of Dn.

(2) X is homeomorphic to (SP )1.
(3) X is a semi-Kelley continuum.

Proof. (1)⇒(2) is a straightforward application of [12, (4.5) Lemma,
p. 336], and (2)⇒(3) is clear.

We prove (3)⇒(1). Assume (3) holds and that (1) does not hold. Hence,
there exists n ∈ N such that for each r ∈ (0, 1] there exist k ∈ {1, . . . , 2n}
and s ≤ t ≤ r with gX(s), gX(t) ∈ Bk

n, gX([s, t]) ∩ Bj
n = ∅ for some

j ∈ {1, . . . , 2n} and gX([s, t]) is not contained in the union of three elements
of Dn. Therefore, for each m ∈ N, there exist k(m), j(m) ∈ {1, . . . , 2n} and
there exist 0 < s(m) ≤ t(m) ≤ 1/m such that gX(s(m)), gX(t(m)) ∈ Bk(m)

n ,
gX([s(m), t(m)]) ∩ Bj(m)

n = ∅ and gX([s(m), t(m)]) is not contained in the
union of three elements of Dn. By passing to a subsequence if necessary,
we may assume that t(m + 1) < s(m) and k(m), j(m) are constant se-
quences such that k(m) = k and j(m) = j for every m ∈ N. Without
loss of generality we may also assume that k = 1. Moreover, assume that
limm→∞ gX(s(m)) = p and limm→∞ gX(t(m)) = q for some points p, q ∈ B1

n.
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Since gX(s(m)) ∈ B1
n and gX([s(m), t(m)]) is connected and not contained in

the union of three elements of Dn, we find that gX([s(m), t(m)])∩Bi
n 6= ∅ for

i = 2, 3 or for i = 2n − 1, 2n. We can clearly assume that gX([s(m), t(m)])∩
B2

n 6= ∅ and gX([s(m), t(m)]) ∩B3
n 6= ∅ for each m ∈ N.

Since gX : (0, 1]→ S1 is continuous and (0, 1] is contractible, the function
gX is homotopic to a constant function κ : (0, 1]→ S1. Since κ has a lifting,
by [7, Proposition 1.30] there is a lifting G : (0, 1] → R of gX , that is,
gX(t) = eiG(t) for each t ∈ (0, 1].

Let m ∈ N. Since gX([s(m), t(m)]) ∩ Bj
n = ∅, we have |G(s(m)) −

G(t(m))| ≤ 2π/2n.
Let u(m) ∈ [s(m), t(m)] be such that G(u(m)) = maxG([s(m), t(m)])

and let v(m) ∈ [u(m+ 1), u(m)] with G(v(m)) = minG([u(m+ 1), u(m)]).
As gX([s(m), t(m)])∩B3

n 6= ∅, we find that G(u(m))−G(s(m)) ≥ 2π/2n

and G(u(m))−G(t(m)) ≥ 2π/2n. Notice that G(u(m))−G(v(m)) ≥ 2π/2n

and G(u(m+ 1))−G(v(m)) ≥ 2π/2n.
We can assume that limm→∞ gX(u(m)) = x and limm→∞ gX(v(m)) = y

for some points x, y ∈ S1. To end the proof, consider the following two cases:

Lm

Jm

J
L

Bn

1

Bn

2

Bn

3

Bn

j

(1+ ( )) ( )t m g mX( )t

(1+ ( +1)) ( +1)t m g mX( )t

(1+ ( )) ( )s m g mX( )s

(1+ ( )) ( )v m g mX( )v

(1+ ( )) ( )a am g mX( )

(1+ ( )) ( )b bm g mX( )

x=y

(1+ ( ))u m g mX( )u( )

(1+ ( +1)) (u m gX( +1))u m

(1+ ( )) ( )g gm g mX( )

(1+ ( )) ( )d dm g mX( )

Fig. 3. Sets used in Case 1

Case 1: x = y. For each m ∈ N, define points α(m), β(m), γ(m), and
δ(m) as follows:

α(m) = min {t ∈ [u(m), t(m)] : G(t) = G(u(m))− 2π/2n+1},
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β(m) = max {t ∈ [s(m), u(m)] : G(t) = G(u(m))− 2π/2n+1},
γ(m) = min {t ∈ [v(m), u(m)] : G(t) = G(v(m)) + 2π/2n+1},
δ(m) = max {t ∈ [u(m+ 1), v(m)] : G(t) = G(v(m)) + 2π/2n+1}.

Define Lm = {(1+ t)gX(t) : t ∈ [β(m), α(m)]} ⊂ X and Jm = {(1+ t)gX(t) :
t ∈ [δ(m), γ(m)]} (see Figure 3). By the definitions, limm→∞ Lm = L for
some subarc L ⊂ S1 of arc length 2π/2n+1 with endpoint x, limm→∞ Jm = J
for some subarc J ⊂ S1 of arc length 2π/2n+1 with endpoint x, and
L ∩ J = {x}. Let K = L ∪ J . Then L and J are incomparable maximal
limit continua of K in X.

J

Bn

1

Bn

2

Bn

3

Bn

j

K

L

x

y

(1+ )t m g m( ) ( )X( )t

(1+ )s m g m( ) ( )X( )s

(1+ ( ))u m g mX( )u( )

(1+ )t m g m( +1) ( +1)X( )t

(1+ ( +1)) (u m gX( +1))u m

(1+ )v m g m( ) ( )X( )v

Lm

Lm+1

Jm

Fig. 4. Sets used in Case 2

Case 2: x 6= y. For each m ∈ N, put Lm = {(1+u(m))gX(u(m))} ⊂ X,
Jm = {(1 + v(m))gX(v(m))} ⊂ X, L = {x} and J = {y}. Let tx, ty ∈ R
be such that x = eitx , y = eity and ty ∈ [tx, tx + 2π]. Finally, we define
K = {eit ∈ S1 : t ∈ [tx, ty]} (see Figure 4). By definitions, limm→∞ Lm = L,
limm→∞ Jm = J , L, J ∈ C(K), and L, J are incomparable maximal limit
continua of K in X.

In both cases X is not a semi-Kelley continuum.
Problem 4.3. Let X be a solenoid. Is it true that there is a unique

semi-Kelley compactification with remainder X?
Problem 4.4. For which semi-Kelley continua X there is a unique semi-

Kelley compactification with remainder X?
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5. There is no semi-Kelley compactification with remainder be-
ing a triod. A continuum T is called a triod if there is a subcontinuum H
of T such that T \H is the union of three nonempty sets any two of which
are mutually separated in T [13, Definition 11.22, p. 208].

Theorem 5.1. Let X be a continuum. Assume that there exist an open
set V ⊂ X, a triod T ⊂ V , a sequence {En}∞n=1 of components of cl(V ),
and a sequence {Tn}∞n=1 of pairwise disjoint arcs converging to T such that
Tn ⊂ En and each point of Tn disconnects En. Then X is not a semi-Kelley
continuum.

Proof. We will use Theorem 2.1. Let W be an open subset of X such
that T ⊂ W ⊂ cl(W ) ⊂ V . Since T is a triod, there exists a subcontinuum
H of T such that T \H is the union of three nonempty sets I, J , L, any two
of which are mutually separated in T .

Fix points a ∈ I, b ∈ J , c ∈ L. Put
ε = min {d(a,H ∪ J ∪ L), d(b,H ∪ I ∪ L), d(c,H ∪ I ∪ J)}/4.

Choose k ∈ N so that 1
k < ε and cl

(
B
(
1
k , a
))
∪cl
(
B
(
1
k , b
))
∪cl(B( 1k , c)) ⊂W .

Since limn→∞ Tn=T , we may assume B
(

1
k+6 , a

)
∩Tn 6=∅, B

(
1

k+6 , b
)
∩Tn 6=∅,

and B
(

1
k+6 , c

)
∩ Tn 6= ∅ for every n ∈ N.

a
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c B k c(1 +5), )/(
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0
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y
0

n
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0

n

Fig. 5. Sets used in Theorem 5.1
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Given p, q ∈ Tn, let pq denote the arc in Tn with endpoints p and q.
For each n ∈ N, choose pn ∈ T2n∩B

(
1

k+3 , a
)
and qn ∈ T2n∩

(
B
(

1
k+3 , b

)
∪

B
(

1
k+3 , c

))
such that pnqn intersects exactly one of B

(
1

k+3 , b
)
and B

(
1

k+3 , c
)
.

We may assume qn ∈ B
(

1
k+3 , b

)
and pnqn ∩B

(
1

k+3 , c
)
= ∅ for each n ∈ N.

For each n ∈ N, choose xn ∈ T2n+1 ∩ B
(

1
k+6 , c

)
and yn ∈ T2n+1 ∩(

B
(

1
k+2 , a

)
∪B
(
1
k , b
))

such that xnyn intersects exactly one of B
(

1
k+2 , a

)
and

B
(
1
k , b
)
(see Figure 5). We may assume yn∈B

(
1

k+2 , a
)
and xnyn∩B

(
1
k , b
)
=∅

for each n ∈ N.
Define K as the component of cl(W ) \

(
B
(
1
k , a
)
∪B

(
1

k+1 , b
)
∪B

(
1

k+4 , c
))

that contains H and also define U = V \
(
cl
(
B
(

1
k+1 , a

))
∪ cl

(
B
(

1
k+2 , b

))
∪

cl
(
B
(

1
k+5 , c

)))
. By definition, U is an open set of X so that K ⊂ U . Now, we

will construct convergent sequences {An}∞n=1 and {Bn}∞n=1 of components
of cl(U) such that limn→∞An = A, limn→∞Bn = B, A ∩ K 6⊂ B, and
B ∩K 6⊂ A.

For each n ∈ N, define the natural order ≤ of the arc Tn for which pn ≤ qn
and xn ≤ yn.

Define q′n = min
{
t ∈ pnqn : t ∈ cl

(
B
(

1
k+1 , b

))}
and p′n = max

{
t ∈ pnq′n :

t ∈ cl
(
B
(
1
k , a
))}

. Thus, p′nq′n ⊂ cl(V ) \
(
B
(
1
k , a
)
∪B

(
1

k+1 , b
)
∪B

(
1

k+4 , c
))
⊂

cl(U). Hence, p′nq′n ⊂ cl(U). Let An be the component of cl(U) such that
p′nq
′
n ⊂ An. Since An is a connected subset of cl(V ) and An ∩ E2n 6= ∅,

we have An ⊂ E2n. Since pn, qn disconnect E2n and pn, qn /∈ cl(U), we see
that An ⊂ pnqn. Then An ∩ B

(
1

k+3 , c
)
= ∅. Assume that limn→∞An = A,

for some A ∈ C(X). Since An ∩ B
(

1
k+3 , c

)
= ∅ for each n ∈ N, we have

A ∩ B
(

1
k+3 , c

)
= ∅. Thus, A ∩ cl

(
B
(

1
k+4 , c

))
= ∅. Since limn→∞ Tn = T

and An ⊂ pnqn ⊂ T2n for each n ∈ N, we have A ⊂ T . Assume that
limn→∞ p

′
n = p′, limn→∞ q

′
n = q′, and limn→∞ p

′
nq
′
n = A′, for some p′, q′ ∈ A

and A′ ∈ C(A). Notice that p′ ∈ T ∩ cl
(
B
(
1
k , a
))

and q′ ∈ T ∩ cl
(
B
(

1
k+1 , b

))
.

Then p′ ∈ I and q′ ∈ J . Hence, A′∩H 6= ∅. Therefore, A′ ⊂ K, p′, q′ ∈ A∩K,
and A ∩ cl

(
B
(

1
k+4 , c

))
= ∅.

Now, define y′n = min
{
t ∈ xnyn : t ∈ cl

(
B
(
1
k , a
))}

and x′n = max
{
t ∈

xny
′
n : t ∈ cl

(
B
(

1
k+4 , c

))}
. Hence, x′ny′n ⊂ cl(U). Let Bn be the compo-

nent of cl(U) such that x′ny′n ⊂ Bn. As in the previous paragraph, we can
assume that limn→∞Bn = B, for some B ⊂ T . Further, limn→∞ x

′
n = x′

and limn→∞ y
′
n = y′ with x′ ∈ T ∩ cl

(
B
(

1
k+4 , c

))
and y′ ∈ T ∩ cl

(
B
(
1
k , a
))
.

Moreover, x′, y′ ∈ B ∩K and B ∩ cl
(
B
(

1
k+1 , b

))
= ∅.

By definitions, q′ ∈ (A∩K)\B and x′ ∈ (B∩K)\A. Hence, by Theorem
2.1, X is not semi-Kelley.

Corollary 5.2. Let X = Y ∪ (0, 1] be a compactification of (0, 1] with
remainder Y . If T is a triod contained in Y and there exists a sequence



338 M. CHACÓN-TIRADO ET AL.

{Tn}∞n=1 of pairwise disjoint arcs in (0, 1] converging to T , then X is not a
semi-Kelley continuum.

Proof. By Theorem 5.1 for V = X and En = X for every n ∈ N, X is
not a semi-Kelley continuum.

Corollary 5.3. Let T be a triod and X = T∪(0, 1] be a compactification
of (0, 1] with remainder T . Then X is not a semi-Kelley continuum.

6. Semi-Kelley compactifications with remainder being a Peano
continuum. In this section we study the semi-Kelley compactifications with
remainder being a Peano continuum. First, we recall the following theorem
which characterizes the Peano continua that are not triods.

Fig. 6. Noose Fig. 7. Eight Fig. 8. Dumbbell Fig. 9. Theta

Theorem 6.1 ([10, Theorem 3.10, p. 536]). If G is a Peano continuum
that is not a triod, then G is one of the following objects: an arc, a sim-
ple closed curve, a noose (Figure 6), a figure eight (Figure 7), a dumbbell
(Figure 8), or a theta curve (Figure 9).

Theorem 6.2. Let G be a Peano continuum and X = G ∪ (0, 1] be a
compactification of (0, 1] with remainder G. If X is a semi-Kelley continuum,
then G is an arc or a simple closed curve.

Proof. Assume that X = G∪(0, 1] is a semi-Kelley continuum. By Corol-
lary 5.3, G is not a triod. By Theorem 6.1, G is one of the following objects:
an arc, a simple closed curve, a noose, a figure eight, a dumbbell, or a letter
theta. We will prove that G is not a noose, a figure eight, a dumbbell, or a
letter theta.

Case 1: G is a noose. Suppose that G = S ∪ L, where S is a simple
closed curve, L is an arc with endpoints u and v, and S ∩L = {v}. Let Y be
the continuum obtained by identifying all points of L to a single point and let
π : X → Y be the quotient map. Notice that Y is a Σ-continuum. Since π is
monotone, by [6, Theorem 8, p. 311], Y is a semi-Kelley continuum. Hence, by
Theorem 4.2, Y is homeomorphic to (SP )1, so Y is a Kelley continuum. Let
S1 ⊂ Y be the remainder of Y and let (0, 1]Y = Y \S1. Let A ⊂ S1 be an arc
such that π(v) ∈ A and π(v) is not an endpoint of A. Moreover, let {un}∞n=1

be a sequence of points in (0, 1] such that limn→∞ un = u. Since Y is a
Kelley continuum and limn→∞ π(un) = π(u) = π(v), there exists a sequence
{An}∞n=1 of arcs in (0, 1]Y such that limn→∞An = A and π(un) ∈ An for
each n ∈ N. By definition of π, we find that {π−1(An)}∞n=1 is a sequence of
arcs in (0, 1]. Without loss of generality assume that limn→∞ π

−1(An) = T
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for some subcontinuum T of G. Notice that π(T ) = A and u, v ∈ T . Hence,
T is a triod. By Corollary 5.2, X is not a semi-Kelley continuum, which
contradicts our assumption.

Case 2: G is a figure eight. Suppose that G = S∪R, where S and R are
simple closed curves such that S ∩ R = {v}. Let u ∈ R be such that u 6= v
and let {un}∞n=1 be a sequence of points in (0, 1] such that limn→∞ un = u.
Let Y be the continuum obtained by identifying all points of R to a single
point and let π : X → Y be the quotient map. As in Case 1, we find that
Y is homeomorphic to (SP )1 = S1 ∪ (0, 1]Y , so Y is a Kelley continuum.
Let A ⊂ S1 be an arc such that π(v) ∈ A and π(v) is not an endpoint of A.
Since Y is a Kelley continuum and limn→∞ π(un) = π(u) = π(v), there
exists a sequence {An}∞n=1 of arcs in (0, 1]Y such that limn→∞An = A and
π(un) ∈ An for each n ∈ N. By definition of π, {π−1(An)}∞n=1 is a sequence
of arcs in (0, 1]. Assume that limn→∞ π

−1(An) = T for some subcontinuum
T of G. Notice that π(T ) = A and u, v ∈ T . Hence, T is a triod. By Corollary
5.2, X is not a semi-Kelley continuum, which contradicts our assumption.

Case 3: G is a dumbbell. Suppose that G = S∪L∪R, where S and R are
disjoint simple closed curves, L is an arc with end points u and v, S∩L = {u},
and R∩L = {v}. Let Y be the continuum obtained by identifying all points
ofR to a single point and let π : X → Y be the quotient map. Notice that Y is
a compactification of (0, 1] with remainder being a noose. By [6, Theorem 8,
p. 311], Y is a semi-Kelley continuum, in contradiction with Case 1.

Case 4: G is a letter theta. Suppose that G = L∪J ∪K, where L, J and
K are arcs with endpoints u and v such that L∩J = L∩K = J∩K = {u, v}.
Let Y be the continuum obtained by identifying all points of J to a single
point and let π : X → Y be the quotient map. Notice that Y is a compactifi-
cation of (0, 1] with remainder being a figure eight. By [6, Theorem 8, p. 311],
Y is a semi-Kelley continuum, in contradiction with Case 2.

The proof concludes by observing that G is an arc or a simple closed
curve.

R. Beane and W. J. Charatonik proved that if X is an arc-like Kelley
continuum then X is a Kelley remainder [2, Theorem 2.3, p. 105]. M. E.
Chacón-Tirado proved that if X is a circle-like Kelley continuum then X is
a Kelley remainder [4, Theorem 1, p. 170]. The following question is natural.

Problem 6.3. Let X be an arc-like or circle-like semi-Kelley continuum.
Is X a semi-Kelley remainder?
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