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THE PROPERTY OF SEMI-KELLEY FOR

HAUSDORFF CONTINUA

MAURICIO CHACÓN-TIRADO AND MARÍA DE J. LÓPEZ

Abstract. In this paper we introduce the property of semi-Kelley
for Hausdor� continua. We use this notion to characterize Haus-
dor� continua with the property of Kelley. We prove that if a
product of Hausdor� continua has the property of semi-Kelley, then
each factor continuum has the property of Kelley. Concerning hy-
perspaces, we prove that if either C(X), Cn(X), or 2X has the
property of semi-Kelley, then X has the property of Kelley.

1. Introduction

The property of Kelley is introduced by J. L. Kelley [12, p. 26, property
3.2] to study contractibility of hyperspaces of metric continua. In 1998,
Janusz J. Charatonik and Wªodzimierz J. Charatonik [3, De�nition 3.16],
introduce the property of semi-Kelley for metric continua; in this paper,
they prove that the property of semi-Kelley is a weaker property than
the property of Kelley and generalize several results known for metric
continua with the property of Kelley to metric continua with the property
of semi-Kelley.

In 1999, W. J. Charatonik [7, De�nition 2.1] and Wªadyslaw Maku-
chowski [16, p. 124] extend, independently, the property of Kelley for
Hausdor� continua; in particular, Charatonik shows an example of a ho-
mogeneous continuum that does not have the property of Kelley, and
Makuchowski uses the property of Kelley to show that several de�nitions
of local connectivity are equivalent in the hyperspace C(X) of a continuum
X with the property of Kelley. In 2006, J. J. Charatonik and Alejandro
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Illanes [6] study local connectedness, local arcwise connectedness, strong
local connectedness, and strong local arcwise connectedness at a point
for the hyperspaces of a compact Hausdor� space; moreover, they study
relationships between those variants when the space has the property of
Kelley. In 2017, Sergio Macías [14] studies the property of Kelley and
the property of Kelley weakly for Hausdor� continua. Hausdor� continua
with the property of Kelley are also studied in [5], [10], [15], and [17].

The aim of this paper is to extend the property of semi-Kelley to the
class of Hausdor� continua and to provide proofs of some results of [3]
in this new setting. Following this introduction, there are four sections.
In section 2, we recall preliminary results about the Vietoris topology
and limit superior of nets of subcontinua of a Hausdor� continuum. In
section 3, we de�ne the notion of Hausdor� maximal limit continuum
(De�nition 3.1), and, using this notion, we de�ne the property of semi-
Kelley for Hausdor� continua (De�nition 3.15). We use these concepts
to characterize Hausdor� continua with the property of Kelley (Theorem
3.12), and we also characterize Hausdor� continua with the property of
semi-Kelley (Theorem 3.18). In section 4, we study the property of Kelley
for Cartesian products and hyperspaces. We prove that if the Cartesian
product of two Hausdor� continua has the property of semi-Kelley, then
each factor continuum has the property of Kelley (Theorem 4.1). Con-
cerning hyperspaces, we show that if X is a Hausdor� continuum which
does not have the property of Kelley and H(X) is a continuum such
that C(X) ⊂ H(X) ⊂ 2X , then H(X) does not have the property of
semi-Kelley (Theorem 4.2). In particular, we obtain that if the n-fold
hyperspace Cn(X) has the property of semi-Kelley, then X has the prop-
erty of Kelley (Corollary 4.3). On the other hand, we prove that if X has
the property of semi-Kelley and A,B ∈ C(X) are such that A ( B and
C(X) is connected im kleinen at A, then C(X) is connected im kleinen
at B as well (Theorem 4.9). In the last section, we show that the prop-
erty of semi-Kelley is preserved under retractions (Theorem 5.2), and,
moreover, semi-con�uent images of continua with the property of Kelley
have the property of semi-Kelley (Theorem 5.4). We also pose some open
questions.

2. Preliminaries

A continuum is a compact, connected Hausdor� space with more than
one point. A metric continuum is a continuum with a metric d that
generates its topology. Let N = {1, 2, . . . } denote the set of natural
numbers. Given a subset A of a topological space X, the interior of A,
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the closure of A, and the boundary of A, are denoted by int(A), cl(A), and
bd(A), respectively. A space is degenerate if it contains only one point.

For a continuum X, let 2X be the collection of all nonempty closed
subsets of X, called the hyperspace of closed subsets of X, endowed with
the Vietoris topology [18, De�nition 1.7]. It is known that if X is a
continuum, then 2X is a continuum [18, Theorem 4.9.6 and Theorem
4.10].

We will need the following lemma.

Lemma 2.1. Let X be a continuum. If β is a basis of the topology of

X, then the family of all sets of the form 〈U1, . . . , Un〉 with n ∈ N and

U1, . . . , Un ∈ β is a basis for the Vietoris topology of the hyperspace 2X .

Proof. Let β be a basis of the topology of X. Let 〈V1, . . . , Vm〉 be a basic
open subset of 2X and let A ∈ 〈V1, . . . , Vm〉. For each i ∈ {1, . . . ,m},
choose Ui ∈ β such that A ∩ Ui 6= ∅ and Ui ⊂ Vi. Since β is a basis, the
collection {U ∈ β : U ⊂

⋃n
i=1 Vi} is an open cover of A; by compactness

of A, we can �nd a �nite subcover {Um+1, . . . , Un} such that A ∩ Ui 6=
∅ for each i ∈ {m + 1, . . . , n}. By [18, Lemma 2.3.1], 〈U1, . . . , Un〉 ⊂
〈V1, . . . , Vn〉. �

We consider C(X) = {A ∈ 2X : A is connected} as a subspace of 2X .
The elements of C(X) are called subcontinua of X and C(X) is called the
hyperspace of subcontinua of X. Given B ∈ C(X), let C(B,X) = {A ∈
C(X) : B ⊂ A ⊂ X}. Notice that C(B,X) = (2X −

⋃
b∈B〈X − {b}〉) ∩

C(X); thus, C(B,X) is a closed subset of C(X).
Given a continuum X, if A ∈ 2X\C(X), there exist U and V open and

disjoint subsets of X such that A ⊂ U ∪V and A∩U 6= ∅ 6= A∩V . Notice
that A ∈ 〈U, V 〉 ⊂ 2X\C(X); therefore, C(X) is a closed subset of 2X .
By [19, Corollary 2.6], C(X) is connected. Hence, C(X) is a continuum.
Similarly, sets of the form C(B,X) are continua if B and X are continua
and B ⊂ X.

For each n ∈ N, the n-fold hyperspace of X is de�ned as Cn(X) = {A ∈
2X : A has at most n components}, considered as a subspace of 2X .

For A ⊂ 2X or A ⊂ C(X), we denote
⋃
A = {x ∈ X : there exists

A ∈ A such that x ∈ A}.
Given a continuum X and A,B ∈ C(X) with A ⊂ B, an order arc in

C(X) from A to B is a subcontinuum A of C(X) such that A and B are
elements of A, any two elements of A are comparable by inclusion, and
for each C ∈ A, A ⊂ C ⊂ B; see [19, p. 286]. The main theorem about
order arcs is the following.

Theorem 2.2. Let X be a continuum. If A and B are subcontinua of X
and A ⊂ B, then there exists an order arc in C(X) from A to B.
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Proof. Let A and B be subcontinua of X such that A ⊂ B. By [13, p.
173, Theorem 5], C(X) is order-dense (that is, for any R, T ∈ C(X) with
R ( T , there exists S ∈ C(X) such that R ( S ( T ). Since A,B ∈ C(X)
and C(X) is a compact Hausdor� order-dense subspace of 2X , by [19,
Theorem 2.4], there is an order arc (in 2X) from A to B, which can be
taken in C(X) by [19, Theorem 2.3]. �

A mapping is a continuous function. Given a function f : X → Y
between continua X and Y and subsets A ⊂ X and B ⊂ Y , let f [A] =
{f(a) : a ∈ A} denote the image of A under f , and let f−1[B] = {x ∈ X :
f(x) ∈ B} denote the inverse image of B under f . The induced function
C(f) : C(X) → C(Y ) is de�ned by C(f)(A) = f [A] for each A ∈ C(X).
The induced function of a mapping f is also a mapping [18, Theorem
5.10.1].

A net in a space X consists of a directed set D and a function f : D →
X. We usually denote a net in X by {xd}d∈D, where xd = f(d) for each
d ∈ D.

Given a continuum X and a net {Ad}d∈D in 2X , S. Mrówka [20, p.
237] de�nes the limit superior of {Ad}d∈D as follows: lim sup{Ad}d∈D =
{x ∈ X : for each open subset U of X with x ∈ U and for each d ∈ D,
there exists m ∈ D with d ≤ m and U ∩Am 6= ∅}.

Mrówka [20, p. 238, 4.] proves that lim sup{Ad}d∈D is a nonempty
closed subset of X.

We will use the following results concerning the limit superior. The
proofs are left to the reader.

Lemma 2.3. Let X be a continuum, let Y ∈ 2X , and let {Ad}d∈D be a

net in 2X . If for each d ∈ D, there exists m ∈ D such that d ≤ m and

Y ∩Am 6= ∅, then Y ∩ lim sup{Ad}d∈D 6= ∅.

Lemma 2.4. Let f : X → Y be a mapping between continua X and Y .

If {Ad}d∈D is a net in 2X , then f [lim sup{Ad}d∈D] = lim sup{f [Ad]}d∈D.

We prove the following lemma.

Lemma 2.5. Let X be a continuum and let A be a subcontinuum of X.

If {Ad}d∈D is a net in C(X) converging to A, then A is an element of

lim sup{C(Ad, X)}d∈D, and for each B ∈ lim sup{C(Ad, X)}d∈D, A ⊂ B.

Proof. Let {Ad}d∈D be a net in C(X) converging to A. By [2, Lemma
3.2], A ∈ lim sup{C(Ad, X)}d∈D.

On the other hand, let B ∈ lim sup{C(Ad, X)}d∈D. Suppose that there
exists a point a ∈ A−B. We can choose two open subsets U and V of X
such that B ⊂ U , a ∈ V , and U ∩ V = ∅. Since 〈V,X〉 ∩C(X) is an open



THE PROPERTY OF SEMI-KELLEY FOR HAUSDORFF CONTINUA 245

subset of C(X) and A ∈ 〈V,X〉 ∩ C(X), we can choose d0 ∈ D such that
Am ∈ 〈V,X〉∩C(X) for each m ∈ D with d0 ≤ m. Since 〈U〉∩C(X) is an
open subset of C(X), B ∈ 〈U〉∩C(X), and B ∈ lim sup{C(Ad, X)}d∈D for
d0 ∈ D, there exists m ∈ D with d0 ≤ m and 〈U〉∩C(X)∩C(Am, X) 6= ∅.
If Bm ∈ 〈U〉 ∩ C(X) ∩ C(Am, X), then Am ⊂ Bm ⊂ U and Am ∩ V 6= ∅.
Hence, U ∩ V 6= ∅, a contradiction. Therefore, A ⊂ B. �

We recall the Maximum-Minimum Theorem (for the metric case, see
[11, p. 110] and [22, p. 68]).

Theorem 2.6 (Maximum-Minimum Theorem). Let X be a continuum.

If A is a nonempty closed subset of C(X), then there exists a maximal

element in A, with respect to inclusion, and there exists a minimal element

in A, with respect to inclusion.

Proof. Let A be a nonempty closed subset of C(X). We use the Kura�
towski�Zorn lemma. Take a chain C ⊂ A, that is, every pair of elements
of C are comparable by inclusion. Since A is a closed subset of C(X) and
C is a chain, we have that cl(

⋃
C) ∈ A. Also, C ⊂ cl(

⋃
C) for each C ∈ C;

we have that C has an upper bound in A. By the Kuratowski�Zorn lemma
A has a maximal element, with respect to inclusion. The existence of the
minimal element is similar, taking

⋂
C ∈ A as a lower bound of the chain

C. �

The following lemma is similar to [12, Lemma 1.2]; the proof is also
similar and we include it for the convenience of the reader.

Lemma 2.7. Let X be a continuum. If K is a connected subset of C(X),
then

⋃
K is a connected subset of X.

Proof. Let K be a connected subset of C(X). Suppose, to the contrary,
that

⋃
K is not connected; thus, there exist U1 and U2 nonempty disjoint

open subsets of
⋃
K such that

⋃
K = U1 ∪ U2. Let W1 and W2 be open

subsets of X such that U1 =W1 ∩
⋃
K and U2 =W2 ∩

⋃
K.

Notice that 〈W1〉∩K and 〈W2〉∩K are open subsets of K, disjoint and
nonempty, and K = (〈W1〉 ∩ K) ∪ (〈W2〉 ∩ K). Thus, K is not connected,
a contradiction to the hypothesis; therefore,

⋃
K is connected. �

3. The Property of Semi-Kelley

In 1998, J. J. Charatonik and W. J. Charatonik [3, De�nition 3.2]
introduce the concept of maximal limit continuum for metric continua.

We extend this concept for Hausdor� continua as follows.
Given a continuum X and U ⊂ C(X), we de�ne the collection

F (U) = {B ∈ C(X) : C(B,X) ∩ U 6= ∅}.
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De�nition 3.1 ([2, De�nition 4.5]). Let X be a continuum and let M
and K be subcontinua of X with M ⊂ K. We say that M is a Hausdor�

maximal limit continuum in K provided that, for each L subcontinuum
of X with M ( L ⊂ K, there is an open subset U of C(X) such that
L ∈ U and the collection F (U) is not a neighborhood of M .

The following lemma follows directly from the de�nition.

Lemma 3.2. Let X be a continuum and let M , K, and L be subcontinua

of X with M ⊂ K ⊂ L. If M is a Hausdor� maximal limit continuum in

L, then M is a Hausdor� maximal limit continuum in K.

Lemma 3.3 ([2, Lemma 4.7]). Let X be a continuum. If K is a subcon-

tinuum of X, then K is a Hausdor� maximal limit continuum in K.

In 1999, W. J. Charatonik [7, De�nition 2.1] and Makuchowski [16, p.
124] introduce, independently, the concept of the property of Kelley for
continua as follows.

De�nition 3.4. Let X be a continuum and let p ∈ X. We say that X
has the property of Kelley at p if, for each K ∈ C({p}, X) and for each
open subset U f C(X) with K ∈ U , there exists an open subset U of X
with p ∈ U such that if q ∈ U , then there exists L ∈ C({q}, X) ∩ U . We
say that X has the property of Kelley provided that it has the property
of Kelley at each of its points.

We will use the following theorem.

Theorem 3.5 ([2, Theorem 4.3]). The following statements are equivalent

for a continuum X:

(1) X has the property of Kelley;

(2) for each open subset U of C(X), the union
⋃
U is an open subset

of X;

(3) the function f : X → 2C(X), de�ned by f(p) = C({p}, X) for

each p ∈ X, is a mapping.

Lemma 3.6 ([2, Lemma 4.16]). Let X be a continuum with the property

of Kelley and let M and K be subcontinua of X. If M ( K, then M is

not a Hausdor� maximal limit continuum in K.

In 1998, J. J. Charatonik and W. J. Charatonik [3, De�nition 3.3]
introduce the concept of strong maximal limit continuum for metric con-
tinua. Recently, in [2, De�nition 4.10] the authors extend this notion to
a weaker concept for continua. Now we present an alternative de�nition,
which is equivalent to the original de�nition in the metric case. With this
new de�nition, we are able to extend some results in the literature and to
�nd new ones.
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De�nition 3.7. Let X be a continuum and let M and K be subcon-
tinua of X with M ⊂ K. We say that M is a Hausdor� strong maximal

limit continuum in K provided that there exists a net {Md}d∈D in C(X)
converging to M such that C(K) ∩ lim sup{C(Md, X)}d∈D = {M}.

The following lemma is immediate from the de�nition.

Lemma 3.8. Let X be a continuum. If K is a subcontinuum of X, then

K is a Hausdor� strong maximal limit continuum in K.

Lemma 3.9. Let X be a continuum and let M and K be subcontinua of

X with M ⊂ K. If M is a Hausdor� strong maximal limit continuum in

K, then M is a Hausdor� maximal limit continuum in K.

Proof. Let M be a Hausdor� strong maximal limit continuum in K and
choose a net {Md}d∈D in C(X) converging to M such that C(K) ∩
lim sup{C(Md, X)}d∈D = {M}. Let L ∈ C(X) be such thatM ( L ⊂ K.
Since L ∈ C(K) and L 6= M , we have that L /∈ lim sup{C(Md, X)}d∈D.
Hence, there exist an open subset U of C(X) and d0 ∈ D such that L ∈ U
and U ∩ C(Md, X) = ∅ for each d ∈ D with d0 ≤ d.

Suppose that F (U) = {B ∈ C(X) : C(B,X)∩U 6= ∅} is a neighborhood
of M in C(X). Since {Md}d∈D converges to M , there exists n0 ∈ D such
that Md ∈ F (U) for all d ∈ D with n0 ≤ d. Therefore, C(Md, X)∩U 6= ∅
for all d ∈ D with n0 ≤ d. Let d ∈ D be such that d0 ≤ d and n0 ≤ d;
then U ∩C(Md, X) = ∅ and C(Md, X)∩ U 6= ∅, a contradiction. So M is
a Hausdor� maximal limit continuum in K. �

By Lemma 3.6, Lemma 3.8, and Lemma 3.9, we have the following
corollary.

Corollary 3.10. Let X be a continuum with the property of Kelley. If

K is a subcontinuum of X, then K is the only Hausdor� strong maximal

limit continuum in K.

Proposition 3.11. Let X be a continuum, let K be a subcontinuum of

X, and let {Ad}d∈D be a net in C(X) converging to some subcontinuum

A of K. If M is a maximal element, with respect to inclusion, of the set

C(K) ∩ lim sup{C(Ad, X)}d∈D, then M is a Hausdor� strong maximal

limit continuum in K.

Proof. Let M be a maximal element, with respect to inclusion, of the set
C(K)∩lim sup{C(Ad, X)}d∈D. Let U = {U ⊂ C(X) : U is an open subset
of C(X) and M ∈ U}. Order the set D×U as follows: If (d1,U1), (d2,U2)
∈ D×U, we say that (d1,U1) ≤ (d2,U2) if and only if d1 ≤ d2 and U2 ⊂ U1,
soD×U is a directed set. For each (d,U) ∈ D×U, de�ne an elementM(d,U)
in C(X) as follows: Since M ∈ lim sup{C(Ad, X)}d∈D, let n ∈ D be such
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that d ≤ n and U ∩ C(An, X) 6= ∅, and choose M(d,U) ∈ U ∩ C(An, X).
Since M(d,U) ∈ U for each (d,U) ∈ D × U, the net {M(d,U)}(d,U)∈D×U
converges to M in C(X).

We show that C(K) ∩ lim sup{C(M(d,U), X)}(d,U)∈D×U = {M}. Let
B ∈ C(K) ∩ lim sup{C(M(d,U), X)}(d,U)∈D×U. By Lemma 2.5, since
{M(d,U)}(d,U)∈D×U converges to M in C(X),

M ∈ lim sup{C(M(d,U), X)}(d,U)∈D×U
and M ⊂ B. Now, we prove that B ∈ lim sup{C(Ad, X)}d∈D. Let
d ∈ D and let V be an open subset of C(X) such that B ∈ V. Since
B ∈ lim sup{C(M(d,U), X)}(d,U)∈D×U and (d,C(X)) ∈ D×U, there exists
(d1,U1) ∈ D×U such that (d,C(X)) ≤ (d1,U1) and V ∩C(M(d1,U1), X) 6=
∅. Let d2 ∈ D be such that d1 ≤ d2 and M(d1,U1) ∈ U1 ∩ C(Ad2

, X).
Thus, Ad2

⊂ M(d1,U1) and C(M(d1,U1), X) ⊂ C(Ad2
, X). Therefore, V ∩

C(Ad2
, X) 6= ∅ and d ≤ d2. Hence, B ∈ C(K) ∩ lim sup{C(Ad, X)}d∈D.

By the maximality of M , it follows that M = B. So

C(K) ∩ lim sup{C(M(d,U), X)}(d,U)∈D×U = {M}.

It follows thatM is a Hausdor� strong maximal limit continuum inK. �

The next theorem generalizes [3, Theorem 3.11].

Theorem 3.12. The following statements are equivalent for a continuum

X:

(1) X has the property of Kelley;

(2) for each K subcontinuum of X, K is the only Hausdor� maximal

limit continuum in K;

(3) for each K subcontinuum of X, K is the only Hausdor� strong

maximal limit continuum in K.

Proof. The implication (1) ⇒ (2) follows from Lemma 3.3 and Lemma
3.6.

The implication (2)⇒ (3) follows from Lemma 3.8 and Lemma 3.9.

We show the implication (3)⇒ (1). Let U be an open subset of C(X)
and suppose that

⋃
U is not an open subset of X. Take a point x ∈⋃

U − int(
⋃
U) and choose K ∈ U such that x ∈ K. Let D = {U ⊂ X : U

is an open subset of X and x ∈ U} be a directed set with U1 ≤ U2 if and
only if U2 ⊂ U1 for each U1, U2 ∈ D.

Now, for each U ∈ D, take a point xU ∈ U−
⋃
U . Notice that {xU}U∈D

is a net in X converging to x and {{xU}}U∈D is a net in C(X) converging
to {x}. By Lemma 2.5, {x} ∈ C(K) ∩ lim sup{C({xU}, X)}U∈D; by
Theorem 2.6, take a maximal element M , with respect to inclusion, of
the set C(K) ∩ lim sup{C({xU}, X)}U∈D. By Proposition 3.11, M is a
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Hausdor� strong maximal limit continuum in K and, by hypothesis,M =
K. Hence, K is an element of lim sup{C({xU}, X)}U∈D. Since K ∈ U
and X ∈ D, there exists V ∈ D such that X ≤ V and U∩C({xV }, X) 6= ∅.
Let BV ∈ U ∩ C({xV }, X), so xV ∈ BV ∈ U . Therefore, xV ∈

⋃
U , a

contradiction to the de�nition of xV . Consequently,
⋃
U is an open subset

of X. By Theorem 3.5, X has the property of Kelley. �

The following theorem generalizes [3, Proposition 3.15]; the proof in
the metric cases uses Whitney mappings. It is worth mentioning that
Whitney mappings do not exist in general for continua [4, Observation 3].

Theorem 3.13. If a continuum X does not have the property of Kelley,

then there exist M and K subcontinua of X such that M is a nondegen-

erate Hausdor� strong maximal limit continuum in K and M ( K.

Proof. LetX be a continuum without the property of Kelley. By Theorem
3.12, let M and K be subcontinua of X such that M ( K and M is a
Hausdor� strong maximal limit continuum in K. If M contains more
than one point, the proof is complete.

Suppose that M is a set consisting of one point and let p ∈ X be
such that M = {p}. Since M is a Hausdor� strong maximal limit con-
tinuum in K, there exists a net {Md}d∈D in C(X) converging to M
such that {M} = C(K) ∩ lim sup{C(Md, X)}d∈D. Also, since M 6= K,
K /∈ lim sup{C(Md, X)}d∈D; thus, there exists an open subset V of
C(X) and m ∈ D such that K ∈ V and V ∩ C(Mn, X) = ∅ for each
n ∈ D with m ≤ n. Let V1, . . . , Vr be open subsets of X such that
K ∈ 〈V1, . . . , Vr〉 ∩ C(X) ⊂ V.

Claim 1. There exists a closed subset W of X such that p ∈ int(W )
and K ∪A ∈ V for each A ∈ 〈W 〉 ∩ C(X).

Proof of Claim 1. Since p ∈ K, without loss of generality, suppose that
p ∈ V1. Let U be an open subset of X such that p ∈ U and cl(U) ⊂ V1.
De�neW = cl(U). Notice that for each A ∈ 〈W 〉∩C(X), A ⊂ cl(U) ⊂ V1.
Hence, K ∪ A ∈ 〈V1, . . . , Vr〉 ∩ C(X) ⊂ V. This completes the proof of
Claim 1.

Claim 2. There exists a nondegenerate subcontinuum B of X such
that M ⊂ B ⊂W and B ∈ lim sup{C(Md, X)}d∈D.

Proof of Claim 2. Let n ∈ D. Since {Md}d∈D converges to M and
M ∈ 〈int(W )〉, there is an element s ∈ D with n ≤ s such that Ms ∈
〈int(W )〉. Let Bs be the component of W that contains Ms. By the
Boundary Bumping Theorem [11, p. 101, Theorem 12.10], Bs ∩ bd(W ) 6=
∅, so Bs ∈ 〈W, bd(W )〉 ∩ C(Ms, X). Hence, 〈W, bd(W )〉 ∩ C(Ms, X) 6= ∅.
By Lemma 2.3, 〈W, bd(W )〉 ∩ lim sup{C(Md, X)}d∈D 6= ∅. Pick B ∈
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〈W, bd(W )〉 ∩ lim sup{C(Md, X)}d∈D. By Lemma 2.5, M ⊂ B. Since
M ⊂ int(W ) and B ∩ bd(W ) 6= ∅, B is a nondegenerate subcontinuum of
X. This ends the proof of Claim 2.

Notice that B ∈ C(K ∪ B) ∩ lim sup{C(Md, X)}d∈D, so let B′ be a
maximal element in C(K ∪B) ∩ lim sup{C(Md, X)}d∈D, with respect to
inclusion, such that B ⊂ B′. By Claim 1, K ∪ B ∈ V, so that K ∪ B /∈
lim sup{C(Md, X)}d∈D. Therefore, B′ 6= K ∪B. By Proposition 3.11, B′

is a Hausdor� strong maximal limit continuum in K ∪ B and, moreover,
B′ contains more than one point. The proof the theorem is complete. �

Corollary 3.14. If a continuum X does not have the property of Kelley,

then there exist M and K subcontinua of X such that M is a nondegen-

erate Hausdor� maximal limit continuum in K and M ( K.

The property of semi-Kelley for metric continua is introduced by J. J.
Charatonik and W. J. Charatonik in [3, De�nition 3.16] using the notion
of maximal limit continuum. We extend this concept to continua using
the notion of Hausdor� maximal limit continuum as follows.

De�nition 3.15. Let X be a continuum. We say that X has the property
of semi-Kelley provided that for each subcontinuumK ofX, ifM1 andM2

are Hausdor� maximal limit continua in K, then M1 ⊂M2 or M2 ⊂M1.

By Theorem 3.12, we obtain the following remark. In the case of metric
continua, the same property holds (see [3, Statement 3.17]).

Remark 3.16. If X is a continuum with the property of Kelley, then X
is a continuum with the property of semi-Kelley.

Lemma 3.17. Let X be a continuum and let M and K be subcontinua of

X such that M is a Hausdor� maximal limit continuum in K. If M 6= K,

then there exists S a Hausdor� strong maximal limit continuum in K such

that M ⊂ S ( K.

Proof. Suppose that M 6= K. Since M is a Hausdor� maximal limit
continuum in K, there exists an open subset U of C(X) such that K ∈
U and the set F (U) is not a neighborhood of M in C(X). Let D =
{V ⊂ C(X) : V is an open subset of C(X) and M ∈ V} be a directed
set with V1 ≤ V2 if and only if V2 ⊂ V1 for each V1,V2 ∈ D. For
each V ∈ D take MV ∈ V such that MV /∈ F (U). Notice that the net
{MV}V∈D converges toM , and C(MV , X)∩U = ∅ for each V ∈ D. Hence,
K /∈ lim sup{C(MV , X)}V∈D. Since C(M,K) ∩ lim sup{C(MV , X)}V∈D
is closed and nonempty (M is an element of it), by Theorem 2.6, there is
a maximal element S ∈ C(M,K) ∩ lim sup{C(MV , X)}V∈D. Notice that
S ( K and S is a maximal element of S ∈ C(K)∩lim sup{C(MV , X)}V∈D.
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By Proposition 3.11, S is a Hausdor� strong maximal limit continuum in
K. �

The next theorem generalizes [3, Theorem 3.18].

Theorem 3.18. The following statements are equivalent for a continuum

X:

(1) X has the property of semi-Kelley;

(2) for each K subcontinuum of X, if M1 and M2 are Hausdor�

strong maximal limit continua in K, then M1 ⊂M2 or M2 ⊂M1.

Proof. The implication (1)⇒ (2) follows from the de�nition of the semi-
Kelley property and Lemma 3.9.

We prove (2) ⇒ (1). Suppose that X does not have the property of
semi-Kelley; thus, there exist M1, M2, and L ∈ C(X) such that M1 and
M2 are Hausdor� maximal limit continua in L, with M1 and M2 not
comparable by inclusion. Notice that {B ∈ C(L) : M1,M2 ⊂ B} is a
nonempty closed subset of C(X). By Theorem 2.6, choose a minimal
element K of {B ∈ C(L) : M1,M2 ⊂ B}, with respect to inclusion. By
Lemma 3.8, K is a Hausdor� strong maximal limit continuum in K.

Claim. At least one of the following statements holds:

• if S is a Hausdor� strong maximal limit continuum in K contain-
ing M1, then S = K;
• if S is a Hausdor� strong maximal limit continuum in K contain-
ing M2, then S = K.

Proof of Claim. Let S1 and S2 be Hausdor� strong maximal limit
continua in K such that M1 ⊂ S1 and M2 ⊂ S2. By (2), S1 ⊂ S2 or
S2 ⊂ S1; thus, S1 ∪ S2 = S2 or S1 ∪ S2 = S1. In either case, S1 ∪ S2 ⊂ K
and S1 ∪ S2 contains M1 and M2. By the choice of K, S1 ∪ S2 = K. So
S1 = K or S2 = K, and the claim is proved.

Without loss of generality, suppose that K is the only Hausdor� strong
maximal limit continuum in K containing M1. By Lemma 3.2, since M1

is a Hausdor� maximal limit continuum in L, M1 is a Hausdor� maximal
limit continuum in K. Since K contains M2, M1 ( K. By Lemma 3.17,
there exists a Hausdor� strong maximal limit continuum S in K such
that M1 ⊂ S ( K, a contradiction. Therefore, X has the property of
semi-Kelley. The proof of the theorem is complete. �

4. Products and Hyperspaces

We start this section with a result related to products. In 1997, Roger
W. Wardle [23, Corollary 4.6] shows that if the Cartesian product of two
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metric continua has the property of Kelley, then each factor continuum
has the property of Kelley. This result can be strengthened by assuming
that the product is a metric continuum with the property of semi-Kelley
[3, Theorem 4.1]. We generalize those results below.

Theorem 4.1. Let X and Y be continua. If X × Y has the property of

semi-Kelley, then X and Y have the property of Kelley.

Proof. Suppose that X × Y has the property of semi-Kelley and that
X does not have the property of Kelley. By Theorem 3.12, there exist
M,K ∈ C(X) such that M ( K and M is a Hausdor� maximal limit
continuum in K. Let p and q be distinct points in Y and let a ∈ K −M .
De�ne K = (K ×{p, q})∪ ({a}×Y ). Notice that K is a subcontinuum in
X × Y .

Claim. The set M × {p} is a Hausdor� maximal limit continuum in
K.

Proof of Claim. Let L ∈ C(X × Y ) be such that M × {p} ( L ⊂ K.
We show that there exists an open subset U of C(X×Y ) such that L ∈ U
and the set F (U) = {B ∈ C(X × Y ) : C(B,X × Y ) ∩ U 6= ∅} is not a
neighborhood of M × {p} in C(X × Y ).

Denote by π1 : X × Y → X the projection on the �rst coordinate.
Since M × {p} ( L, we have that M ⊂ π1[L]. Suppose that M = π1[L].
Observe that L ⊂ π−11 [M ] ∩ K = M × {p, q}. Since L is connected, it
follows that L ⊂ M × {p}. Therefore, L = M × {p}, which contradicts
M × {p} ( L. So we have that M ( π1[L].

Note that π1[L] is a subcontinuum in X and π1[L] ⊂ K. Since M is a
Hausdor� maximal limit continuum in K, there exists an open subset U
of C(X) such that π1[L] ∈ U and the set F (U) = {B ∈ C(X) : C(B,X)∩
U 6= ∅} is not a neighborhood in M . Let C(π1) : C(X × Y ) → C(X)
be the induced mapping and let U = (C(π1))

−1[U ]. Since C(π1) is a
mapping, U is an open subset of C(X × Y ). Recall that L ∈ U.

We prove that the set F (U) is not a neighborhood of M × {p} in
C(X × Y ). Suppose, on the contrary, that F (U) is a neighborhood of
M ×{p} in C(X×Y ). By Lemma 2.1, since {U ×V : U is an open subset
of X and V is an open subset of Y } is a basis for the topology of X × Y ,
there exist open subsets U1, . . . , Un of X and open subsets V1, . . . , Vn of
Y such that

M × {p} ∈ 〈U1 × V1, . . . , Un × Vn〉 ∩ C(X × Y ) ⊂ F (U).
Notice that M ∈ 〈U1, . . . , Un〉 ∩ C(X). Hence, there exists an element
B ∈ 〈U1, . . . , Un〉 ∩ C(X) such that B /∈ F (U); that is, C(B,X) ∩ U = ∅.
Since B × {p} ∈ 〈U1 × V1, . . . , Un × Vn〉 ∩ C(X), we have that C(B ×
{p}, C(X × Y )) ∩ U 6= ∅. Let D ∈ C(B × {p}, C(X × Y )) ∩ U; notice
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B ⊂ π1[D] and π1[D] ∈ U . Hence, π1[D] ∈ C(B,X) ∩ U , a contradiction.
The proof of the claim is complete.

Similarly, the set M × {q} is a Hausdor� maximal limit continuum in
K. Since M × {p} and M × {q} are Hausdor� maximal limit continua
in K which are non-comparable, X × Y does not have the property of
semi-Kelley. Therefore, X must have the property of Kelley. Likewise, Y
has the property of Kelley. This completes the proof of the theorem. �

The following theorem generalizes [3, Theorem 4.5 and Theorem 4.7 ].

Theorem 4.2. Let X be a continuum which does not have the property

of Kelley. If H(X) is a continuum such that C(X) ⊂ H(X) ⊂ 2X , then

H(X) does not have the property of semi-Kelley.

Proof. Assume that H(X) is a continuum such that C(X) ⊂ H(X) ⊂ 2X .
Since X does not have the property of Kelley, by Corollary 3.14, there

exist M,K ∈ C(X) such that M is a nondegenerate Hausdor� maximal
limit continuum in K and M ( K.

Let a ∈ K −M ; by Theorem 2.2, let A be an order arc in C(X) from
{a} to K and let M be an order arc in C(X) from M to K. De�ne
K = F1(K) ∪ A ∪M. Then K is a continuum and K ⊂ C(X) ⊂ H(X).

Claim 1. The set F1(M) is a Hausdor� maximal limit continuum in
K.

Proof of Claim 1. Let L be a continuum such that F1(M) ( L ⊂ K.
We show that there exists an open subset U of C(H(X)) with L ∈ U such
that the set {B ∈ C(H(X)) : C(B,H(X))∩U 6= ∅} is not a neighborhood
of F1(M) in C(H(X)).

Notice that M =
⋃
F1(M) ⊂

⋃
L. Suppose that M =

⋃
L. For each

L ∈ L, L ⊂
⋃
F1(M) = M , so L ∈ C(M). Hence, L ⊂ C(M) ∩ K =

{M} ∪ F1(M). Since L is connected and F1(M) ⊂ L, L = F1(M), a
contradiction. Therefore, M =

⋃
F1(M) (

⋃
L ⊂

⋃
K = K. Since M is

a Hausdor� maximal limit continuum in K, there is an open subset U of
C(X) such that

⋃
L ∈ U and such that the set

(4.1) {B ∈ C(X) : C(B,X) ∩ U 6= ∅}

is not a neighborhood of M in C(X).
Let U1, . . . , Un be open subsets of X such that

⋃
L ∈ 〈U1, . . . , Un〉 ∩

C(X) ⊂ U .
For ease of notation, given a �nite family V = {V1, . . . , Vm} of open

subsets of X, de�ne the set

〈V〉 = 〈V1, . . . , Vm〉;
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given a �nite family V = {V1, . . . ,Vm} of open subsets of H(X), de�ne
the set

〈V〉2H(X) = 〈V1, . . . ,Vm〉2H(X) ,

a basic open set of the Vietoris topology of 2H(X).

For each L ∈ L, L ⊂
⋃
L ⊂ U1 ∪ · · · ∪ Un. Consider the �nite family

UL = {U ∈ {U1, . . . , Un} : L ∩ U 6= ∅} of open subsets of X. Hence,
L ∈ 〈UL〉∩H(X). Observe that {〈UL〉∩H(X) : L ∈ L} is a �nite family of
open subsets of H(X). Let U = 〈{〈UL〉∩H(X) : L ∈ L}〉2H(X)∩C(H(X)).
We prove that L ∈ U. For each L ∈ L, L ∈ 〈UL〉 ∩ H(X). Therefore,
L ⊂

⋃
L∈L(〈UL〉 ∩H(X)). Moreover, L∩ (〈UL〉 ∩H(X)) 6= ∅ since L is an

element of it. So we have that L ∈ U.

Finally, we prove that the set

(4.2) {B ∈ C(H(X)) : C(B,H(X)) ∩ U 6= ∅}
is not a neighborhood of F1(M) in C(H(X)).

Suppose, on the contrary, that (4.2) is a neighborhood of F1(M) in
C(H(X)). Let W1, . . . ,Wm be open subsets of H(X) such that F1(M) is
an element of 〈W1, . . . ,Wm〉2H(X) ∩ C(H(X)) and

〈W1, . . . ,Wm〉2H(X) ∩C(H(X)) ⊂ {B ∈ C(H(X)) : C(B,H(X))∩ U 6= ∅}.
Notice that the function p : F1(X) → X, de�ned by p({x}) = x

for each {x} ∈ F1(X), is a homeomorphism. For each i ∈ {1, . . . ,m},
de�ne Wi = {x ∈ X : {x} ∈ Wi ∩ F1(X)} = p[Wi ∩ F1(X)]. Since
Wi ∩ F1(X) is an open subset of F1(X), Wi is an open subset of X for
each i ∈ {1, . . . ,m}. We show that 〈W1, . . . ,Wm〉 contains M . Since
F1(M) ⊂

⋃m
i=1Wi, it follows that F1(M) ⊂

⋃m
i=1(Wi ∩ F1(X)). Hence,

M = p[F1(M)] ⊂ p[
⋃m

i=1(Wi∩F1(X))] =
⋃m

i=1 p[Wi∩F1(X)] =
⋃m

i=1Wi.
For each i ∈ {1, . . . ,m}, F1(M)∩Wi 6= ∅, so p[F1(M)]∩p[Wi∩F1(X)] 6= ∅;
that is, M ∩Wi 6= ∅. Thus, 〈W1, . . . ,Wm〉 ∩ C(X) is a neighborhood of
M in C(X). By (4.1), there exists an element

(4.3) B ∈ 〈W1, . . . ,Wm〉 ∩ C(X) such that C(B,X) ∩ U = ∅.
Note that F1(B) ∈ 〈W1, . . . ,Wm〉2H(X)∩C(H(X)), so C(F1(B),H(X))

∩U 6= ∅. Take D ∈ C(F1(B),H(X))∩U. Since F1(B) ⊂ D ⊂ H(X), B =⋃
F1(B) ⊂

⋃
D ⊂ X. By [6, Lemma 2.2], since D ⊂ 2X is a continuum

and D ∩ C(X) 6= ∅,
⋃
D is a continuum. Therefore,

⋃
D ∈ C(B,X).

Now we prove that
⋃
D ∈ 〈U1, . . . , Un〉 ∩ C(X). Given x ∈

⋃
D, there

exists an element E ∈ D such that x ∈ E. Since D ∈ U, D ⊂
⋃

L∈L(〈UL〉∩
H(X)). Hence, there exists an element L ∈ L such that E ∈ 〈UL〉∩H(X),
and x ∈ E ⊂

⋃
UL ⊂

⋃n
i=1 Ui. Therefore,

⋃
D ⊂

⋃n
i=1 Ui. On the other

hand, let k ∈ {1, . . . , n}; since
⋃
L ∈ 〈U1, . . . , Un〉 ∩ C(X), consider a

point x ∈ (
⋃
L) ∩ Uk. Now, there exists an element L ∈ L such that
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x ∈ L ∩ Uk; since D ∈ U, D ∩ (〈UL〉 ∩ H(X)) 6= ∅. Consider E ∈ D such
that E ∈ 〈UL〉∩H(X). Since Uk ∈ UL, E∩Uk 6= ∅. As E ⊂

⋃
D, it follows

that (
⋃
D)∩Uk 6= ∅. Therefore,

⋃
D ∈ C(B,X)∩ (〈U1, . . . , Un〉 ∩C(X)).

Hence,
⋃
D ∈ C(B,X) ∩ U , contradicting (4.3). The proof of Claim 1 is

complete.

Claim 2. The set {M} is a Hausdor� maximal limit continuum in K.
Proof of Claim 2. Let L be a continuum such that {M} ( L ⊂ K. We

show that there exists an open subset U of C(H(X)) such that L ∈ U and
the set {B ∈ C(H(X)) : C(B,H(X)) ∩ U 6= ∅} is not a neighborhood of
{M} in C(H(X)). As in Claim 1, M (

⋃
L ⊂

⋃
K = K and

⋃
L is a

subcontinuum in X. Since M is a Hausdor� maximal limit continuum in
K, there exists an open subset U of C(X) such that

⋃
L ∈ U and the set

(4.4) {B ∈ C(X) : C(B,X) ∩ U 6= ∅}

is not a neighborhood of M in C(X).
Let U1, . . . , Un be open subsets of X such that

⋃
L ∈ 〈U1, . . . , Un〉

∩C(X) ⊂ U . We consider the sets 〈V〉 and UL as in the proof of Claim 1.

De�ne U = 〈{〈UL〉 ∩ H(X) : L ∈ L}〉2H(X) ∩ C(H(X)). As in Claim 1,
U is an open subset of C(H(X)) and L ∈ U.

We prove that the set

(4.5) {B ∈ C(H(X)) : C(B,H(X)) ∩ U 6= ∅}

is not a neighborhood of {M} in C(H(X)).
Suppose that (4.5) is a neighborhood of {M} in C(H(X)). We consider

an open subsetW ofH(X) such that {M} ∈ 〈W〉2H(X)∩C(H(X)) ⊂ {B ∈
C(H(X)) : C(B,H(X)) ∩ U 6= ∅}. Hence, {M} ⊂ W and it follows that
M ∈ W ∩ C(X). By (4.4), there exists an element

(4.6) B ∈ W ∩ C(X) such that C(B,X) ∩ U = ∅.

Therefore, C(B,X) ∩ (〈U1, . . . , Un〉 ∩ C(X)) = ∅. Note that {B} ∈
〈W〉2H(X) ∩ C(H(X)) and C({B},H(X)) ∩ U 6= ∅. Consider an element
D ∈ C({B},H(X)) ∩ U. Since {B} ⊂ D ⊂ H(X), B ⊂

⋃
D ⊂ X. By

[6, Lemma 2.2], since D ⊂ 2X is a continuum which intersects C(X),⋃
D is a continuum. Hence,

⋃
D ∈ C(B,X). As in the proof of Claim 1,⋃

D ∈ 〈U1, . . . , Un〉∩C(X). Therefore,
⋃
D ∈ C(B,X)∩U , contradicting

(4.6). The proof of Claim 2 is complete.

By claims 1 and 2, F1(M) and {M} are Hausdor� maximal limit con-
tinua in K; since F1(M) and {M} are non-comparable, we obtain that
H(X) does not have the property of semi-Kelley. The proof of the theorem
is complete. �
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As a consequence of Theorem 4.2, we obtain the following result con-
cerning the n-fold hyperspace of a continuum.

Corollary 4.3. Let X be a continuum and let n ∈ N. If Cn(X) has the

property of semi-Kelley, then X has the property of Kelley.

Question 4.4. Let X be a continuum with the property of Kelley. Does
there exist a continuum H(X) with the property of semi-Kelley such that
C(X) ⊂ H(X) ⊂ 2X?

The following question of Sam B. Nadler, Jr., is still unsolved (see [21,
p. 558, Question (16.37)]).

Question 4.5. Let X be a continuum. If 2X has the property of Kelley,
then does C(X) have the property of Kelley?

With relation to the previous question, we pose the following question.

Question 4.6. Let X be a continuum. If 2X has the property of semi-
Kelley, then does C(X) have the property of semi-Kelley?

The continuum X given in [1, Example 2.1] has the property of Kelley,
while C(X) does not have the property of semi-Kelley. The following
question is natural and is related to Question 4.6.

Question 4.7. Let X be the continuum given in [1, Example 2.1]. Does
2X have the property of semi-Kelley?

Given a continuum X and x ∈ X, we say that X is connected im

kleinen at x provided that for each open subset U of X with x ∈ U , there
exists a continuum K such that K ⊂ U and x ∈ int(K).

The following result is a generalization of [9, Theorem 2].

Lemma 4.8. The following statements are equivalent for a continuum X
and a subcontinuum A of X:

(1) C(X) is connected im kleinen at A;
(2) for each open subset U of X with A ⊂ U , there exists an open

subset U of C(X) such that A ∈ U ⊂ 〈U〉 ∩ C(X), and, for each

A′ ∈ U , A and A′ are contained in the same component of U .

Proof. We prove (1) ⇒ (2). Let U be an open subset of X such that
A ⊂ U . Since A ∈ 〈U〉 ∩ C(X) and C(X) is connected im kleinen at A,
there exists a continuum K ⊂ 〈U〉 ∩ C(X) such that A ∈ int(K). Let
U = int(K) and consider A′ ∈ U . By Lemma 2.7,

⋃
K is connected; since

A,A′ ⊂
⋃
K ⊂ U , A and A′ are contained in the same component of U .

Now, we prove (2) ⇒ (1). Let W be an open subset of C(X) such
that A ∈ W and let U be an open subset of C(X) such that cl(U) ⊂ W.
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Consider open subsets U1, . . . , Un of X such that A ∈ 〈U1, . . . , Un〉 ∩
C(X) ⊂ U . Let U = U1 ∪ · · · ∪ Un, and let V be an open subset of X
such that A ⊂ V ⊂ cl(V ) ⊂ U . By (2), there exists an open subset V of
C(X) such that A ∈ V ⊂ 〈V 〉 ∩ C(X), and, for each A′ ∈ V, A and A′

are contained in the same component of V . Denote by KA the closure of
the component of V that contains A. Consider the set K = {B ∈ C(X) :
B ⊂ KA and there exists D ∈ V ∩ 〈U1, . . . , Un〉 such that D ⊂ B}.

Notice A ∈ V ∩ 〈U1, . . . , Un〉. We prove that V ∩ 〈U1, . . . , Un〉 ⊂ K:
Let B ∈ V ∩ 〈U1, . . . , Un〉; since B ∈ V, it follows that B ⊂ KA. Taking
D = B, we obtain B ∈ K. Therefore, V ∩ 〈U1, . . . , Un〉 ⊂ K. Now we
prove that K is a connected set. Take elements B1, B2 ∈ K; notice that
B1, B2 ⊂ KA. Since KA is a continuum, by Theorem 2.2, let B1 and B2 be
two order arcs in C(X) from B1 to KA and from B2 to KA, respectively.
Notice that B1 ⊂ K and B2 ⊂ K. Hence, B1 ∪ B2 is a connected set in K
containing B1 and B2. Therefore, K is connected.

We prove that K ⊂ U . Let B ∈ K and let D ∈ V ∩ 〈U1, . . . , Un〉 such
that D ⊂ B ⊂ KA ⊂ cl(V ) ⊂ U . Moreover, since D ∈ 〈U1, . . . , Un〉,
then D ∩ Ui 6= ∅ for each i ∈ {1, . . . , n}. Hence, B ∩ Ui 6= ∅ for each i ∈
{1, . . . , n}. Since B ⊂ U , U = U1∪· · ·∪Un, and 〈U1, . . . , Un〉∩C(X) ⊂ U ,
it follows that B ∈ U . Therefore, K ⊂ U .

Since K ⊂ U , cl(K) ⊂ cl(U) ⊂ W. We have that cl(K) is a continuum
contained in W that has A in its interior. Therefore, C(X) is connected
im kleinen at A. �

The following theorem generalizes [3, Theorem 4.9].

Theorem 4.9. Let X be a continuum with the property of semi-Kelley

and let A and B be subcontinua of X with A ( B. If C(X) is connected

im kleinen at A, then C(X) is connected im kleinen at B.

Proof. Assume that C(X) is not connected im kleinen at B. We will
prove that C(X) is not connected im kleinen at A.

By Lemma 4.8, there is an open subset U of X with the following
properties: (a) B ⊂ U and (b) for each open subset U of C(X) with
B ∈ U ⊂ 〈U〉 ∩C(X), there exists an element B′ ∈ U such that B and B′

are contained in distinct components of U .

Claim. For each a ∈ A, there exists a Hausdor� maximal limit con-
tinuum A′ in A with the following properties: (c) a ∈ A′ and (d) for
each open subset U of C(X) with A′ ∈ U ⊂ 〈U〉 ∩ C(X), there exists an
element J ∈ U such that B and J are contained in distinct components
of U .

Proof of Claim. Let a ∈ A and let

D = {W ⊂ U :W is an open subset of X and a ∈W}
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be a directed set withW1 ≤W2 if and only ifW2 ⊂W1, for eachW1,W2 ∈
D.

Given W ∈ D, notice that a ∈ B ∩ W , a ∈ B ∩ U , and B ⊂ U =
W ∪ U . Hence, B ∈ 〈W,U〉 ∩ C(X) ⊂ 〈U〉 ∩ C(X). Take an element
B(W ) ∈ 〈W,U〉 ∩C(X) such that B and B(W ) are contained in distinct
components of U , and choose a point a(W ) ∈ B(W ) ∩W . Notice that
the net {a(W )}W∈D converges to a. By Lemma 2.5,

{a} ∈ C(A) ∩ lim sup{C({a(W )}, X)}W∈D.

By Theorem 2.6, take a maximal element A′ of C(A) ∩ lim sup
{C({a(W )}, X)}W∈D, with respect to inclusion. By Lemma 3.9 and
Proposition 3.11, A′ is a Hausdor� maximal limit continuum in A. By
Lemma 2.5, a ∈ A′.

Now we prove (d). Let U be an open subset of C(X) with A′ ∈ U ⊂
〈U〉 ∩ C(X). Since A′ ∈ lim sup{C({a(W )}, X)}W∈D and U ∈ D, then
there exists an elementW ∈ D such that U ≤W and C({a(W )}, X)∩U 6=
∅. Now, let J ∈ C({a(W )}, X) ∩ U , so a(W ) ∈ J ⊂ U . Therefore, J
and B(W ) are contained in the same component of U , and J and B are
contained in distinct components of U . The proof the claim is complete.

Now we use Lemma 4.8 to prove that C(X) is not connected im kleinen
at A. Let U be an open subset of C(X) such that A ∈ U ⊂ 〈U〉 ∩ C(X).
We show an element A′ ∈ U such that A and A′ are contained in distinct
components of U . Let U1, . . . , Un be open subsets of X such that A ∈
〈U1, . . . , Un〉 ∩ C(X) ⊂ U . For each i ∈ {1, . . . , n}, choose ai ∈ A ∩ Ui,
and let Ai be a Hausdor� maximal limit continuum in A, as given by the
claim applied to the point ai. Since X is a continuum with the property
of semi-Kelley, there exists j ∈ {1, . . . , n} such that Ai ⊂ Aj for each
i ∈ {1, . . . , n}. Note that Aj ∈ 〈U1, . . . , Un〉∩C(X) ⊂ 〈U〉∩C(X) and, by
the de�nition of Aj , there exists an element A′ ∈ 〈U1, . . . , Un〉∩C(X) ⊂ U
such that A′ and B are contained in distinct components of U . Since
Aj ⊂ A ⊂ B, A′ and A are contained in distinct components of U . By
Lemma 4.8, C(X) is not connected im kleinen at A. The proof of the
theorem is complete. �

To �nish this section, we give an example of a metric continuum X
without the property of semi-Kelley that satis�es Theorem 4.9.

Example 4.10. Given p, q ∈ R2, let pq denote the convex straight line
segment from p to q. For each n ∈ N, de�ne an = (0, 1

n ), bn = (0,− 1
n ),

c = (−1, 0), d = (1, 0), and e = (0, 0). Set X = cd∪
⋃
{can∪dbn : n ∈ N}.

We prove that X does not have the property of semi-Kelley. Let K =
[− 1

2 ,
1
2 ]×{0}, M1 = [− 1

2 , 0]×{0}, and M2 = [0, 12 ]×{0}; notice that M1
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and M2 are Hausdor� maximal limit continua in K and the sets M1 and
M2 are not comparable.

Let A ∈ C(X); we prove that C(X) is connected im kleinen at A if
and only if at least one of following two statements holds: (i) A contains
a point x such that X is connected im kleinen at x or (ii) A− ce 6= ∅ and
A− ed 6= ∅.

Suppose that C(X) is connected im kleinen at A and that A does not
contain a point x such that X is connected im kleinen at x. There exist
p, q ∈ (−1, 1) such that p ≤ q and A = [p, q] × {0}. Suppose q ≤ 0.
We contradict Lemma 4.8 as follows: Let U = X − {c, d}; notice that
the component of U that contains A is cd − {c, d}. For each n ∈ N, let
pn = (p, (1+ p) 1n ) and let qn = (q, (1+ q) 1n ) be points in can. Notice that
pnqn and pq are contained in distinct components of U and that {pnqn}∞n=1

converges in C(X) to pq. This contradicts Lemma 4.8. Therefore, q > 0.
In a similar way, we prove that p < 0. Hence, A− ce 6= ∅ and A− ed 6= ∅.

Now suppose that either (i) or (ii) holds. If (i) holds, by [17, Corollary
4], C(X) is connected im kleinen at A. If (ii) holds and (i) does not hold,
there exist −1 < p < 0 and 0 < q < 1 such that A = [p, q]× {0}. We use
Lemma 4.8; let U be an open subset of X such that A ⊂ U ; let V and
W be the two distinct components of X − {e}; notice that V and W are
open in X and V ∩U 6= ∅ 6=W ∩U . De�ne U = 〈U, V ∩U,W ∩U〉∩C(X);
notice that U ⊂ 〈U〉 ∩C(X) and, for each A′ ∈ U , e ∈ A′. Since e ∈ A, A
and A′ are contained in the same component of U . By Lemma 4.8, C(X)
is connected im kleinen at A.

If A ⊂ B and A satis�es (i) or (ii), then B satis�es (i) or (ii). Hence,
C(X) is connected im kleinen at B if it is connected im kleinen at A.

5. Mappings

A surjective mapping f : X → Y between continua is said to be

• a retraction, provided that Y ⊂ X and f(y) = y for each y ∈ Y ;
in this case, we say that Y is a retract of X;

• open, provided that for each open subset of X, its image under f
is an open subset of Y ;

• monotone, provided that the point-inverse f−1(y) is connected
for each point y ∈ Y ;
• con�uent, provided that for each subcontinuum Q of Y , each com-
ponent of the inverse image f−1[Q] is mapped onto Q under f ;
• weakly con�uent, provided that for each subcontinuum Q of Y ,
there is a component of the inverse image f−1[Q] which is mapped
onto Q under f ;
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• semi-con�uent, provided that for each subcontinuum Q of Y and
for each two components C1 and C2 of the inverse image f−1[Q],
either f [C1] ⊂ f [C2] or f [C2] ⊂ f [C1].

In this section, we prove that the property of semi-Kelley is preserved
under retractions (Theorem 5.2) and, moreover, semi-con�uent images of
continua with the property of Kelley have the property of semi-Kelley
(Theorem 5.4).

We start with a lemma, generalizing [3, Lemma 5.1].

Lemma 5.1. Let X and Y be continua such that Y is a retract of X,

and let K be a subcontinuum of Y . If M is a Hausdor� maximal limit

continuum in K when K is considered as a subcontinuum of Y , then M
is a Hausdor� maximal limit continuum in K when K is considered as a

subcontinuum of X.

Proof. Suppose that M is a Hausdor� maximal limit continuum in K
when K is considered as a subcontinuum of Y . Let r : X → Y be a
retraction. Choose a subcontinuum L of X with M ( L ⊂ K. Since M
is a Hausdor� maximal limit continuum in K when K is considered as
a subcontinuum of Y , there exists an open subset U of C(Y ) such that
L ∈ U and the set {B ∈ C(Y ) : C(B, Y ) ∩ U 6= ∅} is not a neighborhood
of M in C(Y ). Let C(r) : C(X)→ C(Y ) be the induced mapping and let
V = C(r)−1[U ]; then V is an open subset of C(X) such that L ∈ U ⊂ V.
Observe that {B ∈ C(X) : C(B,X) ∩ V 6= ∅} ∩ C(Y ) = {B ∈ C(Y ) :
C(B, Y ) ∩ U 6= ∅}. Hence, {B ∈ C(X) : C(B,X) ∩ V 6= ∅} is not a
neighborhood of M in C(X). �

The following theorem follows from Lemma 5.1.

Theorem 5.2. Let X and Y be continua and let r : X → Y ⊂ X be a

retraction. If X has the property of semi-Kelley, then Y has the property

of semi-Kelley.

The following result generalizes [3, Lemma 5.3].

Lemma 5.3. Let X and Y be continua such that X has the property of

Kelley, let f : X → Y be a weakly con�uent mapping, and let K be a

subcontinuum of Y . If A is a Hausdor� strong maximal limit continuum

in K, then there exists a component E of f−1[K] such that f [E] = A.

Proof. Suppose that A is a Hausdor� strong maximal limit continuum in
K. Let {Ad}d∈D be a net in C(Y ) converging to A such that

C(K) ∩ lim sup{C(Ad, Y )}d∈D = {A}.
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Since f is weakly con�uent for each d ∈ D, choose a component Bd of
f−1[Ad] such that f [Bd] = Ad, so Bd ∈ C(X). Since {Bd} ⊂ C(X) for
each d ∈ D, lim sup{{Bd}}d∈D ⊂ C(X). Let B ∈ lim sup{{Bd}}d∈D.

Claim 1. f [B] = A.

Proof of Claim 1. Consider the induced mapping C(f) : C(X) →
C(Y ). Notice that C(f)[{Bd}] = {Ad} for each d ∈ D. By Lemma 2.4,
C(f)[lim sup{{Bd}}d∈D] = lim sup{C(f)[{Bd}]}d∈D = lim sup{{Ad}}d∈D
= {A}. Hence, C(f)(B) ∈ {A}. This �nishes the proof of Claim 1.

Let E be the component of f−1[K] such that B ⊂ E. It follows that
A = f [B] ⊂ f [E] ⊂ K.

Claim 2. f [E] ⊂ A.
Proof of Claim 2. Suppose that A ( f [E] ⊂ K; since A is a Hausdor�

strong maximal limit continuum inK, we have that f [E] is not an element
of lim sup{C(Ad, Y )}d∈D. Hence, there exists an open subset U of C(Y )
such that f [E] ∈ U , and there exists an element d0 ∈ D such that U ∩
C(Ad, Y ) = ∅ for each d ∈ D with d0 ≤ d. Without loss of generality, we
may choose U1, . . . , Un open subsets of Y and U = 〈U1, . . . , Un〉 ∩ C(Y )
for some n ∈ N. Since A ⊂ f(E) ∈ U , renumbering the sets U1, . . . , Un, if
necessary, we may suppose that {1, . . . ,m} = {i ∈ {1, . . . , n} : Ui∩A 6= ∅}
for some m ∈ N. Since 〈U1, . . . , Um〉 ∩ C(Y ) is an open subset of C(X)
that contains A, choose d1 ∈ D such that Ad ∈ 〈U1, . . . , Um〉 ∩ C(Y ) for
each d ∈ D with d1 ≤ d.

Observe that C(f)−1[U ] is an open subset of C(X) and E ∈ C(f)−1[U ].
Let U =

⋃
C(f)−1[U ]. Since X has the property of Kelley, by Theorem

3.5, U is an open subset of X. Notice that B ⊂ E ⊂ U , so B ∈ 〈U〉.
Since d0 ∈ D, 〈U〉∩C(X) is an open subset of C(X) containing B and

B ∈ lim sup{{Bd}}d∈D, there exists an element d2 ∈ D with d0 ≤ d2,
d1 ≤ d2, and 〈U〉 ∩C(X)∩ {Bd2

} 6= ∅. Therefore, Bd2
∈ 〈U〉 ∩C(X) and

Bd2
⊂ U . For d2 ∈ D, take a point bd2

∈ Bd2
⊂ U ; then there exists an

element Vd2
∈ C(f)−1[U ] such that bd2

∈ Vd2
. Notice that C(f)[Vd2

] ∈ U .
Now, f [Vd2 ∪ Bd2 ] = f [Vd2 ] ∪ f [Bd2 ] = f [Vd2 ] ∪ Ad2 ∈ C(Ad2 , Y ), which
implies f [Vd2 ] ∪ Ad2 /∈ U as d0 ≤ d2. Since f [Vd2 ] ∈ 〈U1, . . . , Un〉 ∩ C(Y )
and Ad2

∈ 〈U1, . . . , Um〉 ∩C(Y ) by d1 ≤ d2, it follows that f [Vd2
]∪Ad2

∈
〈U1, . . . , Un〉 ∩ C(Y ), a contradiction. This proves Claim 2.

By claims 1 and 2, E is a component of f−1[K] such that f [E] = A. �

As a corollary of Lemma 5.3, we obtain the following theorem, whose
proof is the same as the one given in [3, Theorem 5.5] for metric continua.
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Theorem 5.4. Let X and Y be continua. If f : X → Y is a semi-

con�uent mapping and X has the property of Kelley, then Y has the

property of semi-Kelley.

The property of semi-Kelley is not preserved by con�uent mappings,
even in the metric case ([3, Example 5.8]). On the other hand, it was
shown very recently that the property of semi-Kelley is preserved under
open mappings and under monotone mappings of metric continua [8, The-
orem 7 and Theorem 8]. In connection with these results, the following
question is interesting and natural.

Question 5.5. Is the property of semi-Kelley preserved under (a) mono-
tone, (b) open mappings?
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