
Topology and its Applications 294 (2021) 107636
Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Finitely generated Whitney mappings ✩

Mauricio E. Chacón-Tirado a,∗, Alejandro Illanes b

a Facultad de Ciencias Físico Matemáticas, BUAP, Avenida San Claudio y 18 Sur, Colonia San Manuel, 
72570 Puebla, Pue., Mexico
b Instituto de Matemáticas, Universidad Nacional Autónoma de México, Circuito Exterior, 
Cd. Universitaria, Ciudad de México 04510, Mexico

a r t i c l e i n f o a b s t r a c t

Article history:
Received 21 August 2020
Received in revised form 11 
February 2021
Accepted 16 February 2021
Available online 23 February 2021

MSC:
primary 54F16
secondary 54B20, 54F15, 54F50

Keywords:
Continuum
Disconnection number
End-point
Hyperspace
n-od
Tree
Whitney mapping

For a metric continuum X, we consider the hyperspace of subcontinua C(X) of 
X, with the Hausdorff metric. A Whitney mapping is a continuous function μ :
C(X) → [0, ∞) such that: (a) for each p ∈ X, μ(p) = 0, and (b) if A, B ∈ C(X)
and A � B, then μ(A) < μ(B). The Whitney mapping μ is finitely generated if 
there exist a finite number of continuous functions f1, . . . , fn : X → [0, 1] such that 
for each A ∈ C(X), μ(A) = length(f1(A)) + · · · + length(fn(A)). In this paper we 
study the continua X for which there exist finitely generated Whitney mappings. 
In particular, when X is a tree, we find relations among the number of necessary 
mappings to generate a Whitney mapping with: the number of necessary arcs for 
covering X; the number of end-points of X; the disconnection number of X; the 
dimension of C(X) and the number n for which X is an n-od.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

A continuum is a nonempty non-degenerate compact connected metric space. A subcontinuum of a 
continuum X is a nonempty closed connected subspace of X, so one-point sets are subcontinua. A mapping
is a continuous function. We consider the hyperspace of subcontinua C(X) of X with the Hausdorff metric 
[3, Definition 2.1].

A Whitney mapping is a continuous function μ : C(X) → [0, ∞) such that:
(a) for each p ∈ X, μ(p) = 0 and,
(b) if A, B ∈ C(X) and A � B, then μ(A) < μ(B).
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The Whitney mapping μ is generated by the n mappings f1, . . . , fn : X → [0, 1] such that for every 
A ∈ C(X)

μ(A) = length(f1(A)) + · · · + length(fn(A)).

Define the Whitney generated degree, wgd(X), of X by

wgd(X) = min({n ∈ N : there exists a Whitney mapping

μ : C(X) → [0,∞) that can be generated by n mappings} ∪ {∞}).

Note that for each subcontinuum A of the continuum X, wgd(A) ≤ wgd(X).
Whitney mappings where defined by H. Whitney in [7, p. 275]. Since then Whitney mappings have been 

a very useful tool for the study of the structure of hyperspaces. There are only a few explicit formulas 
for them (see [5, 0.50.1, 0.50.2, 0.50.3] and [1]) and they are defined not only for the hyperspace C(X)
but for the hyperspace 2X of all nonempty closed subsets of X. There are some few continua X for which 
is easy to define Whitney mappings. For example, for finite graphs (continua which are a finite union of 
arcs, called edges, such that each pair of them intersect only in a subset of their end-points), it is possible 
to define a Whitney mapping for C(X) by taking, for each A ∈ C(X) the sum of the lengths of the 
intersection of A with the edges of X. Another simple example is the continuum Y defined as the closure 
of the graph of the mapping sin( 1

x ), taking x ∈ (0, 1]. Then the mapping μ : C(Y ) → [0, 3] given by 
μ(A) = length(π1(A)) + length(π2(A)) is a Whitney mapping (π1 and π2 are the natural projections from 
the plane onto the real line). This paper is motivated by the question: for which continua X it is possible 
to define a simple Whitney mapping for C(X)? (see [2, Problem 2]).

We study this question, we find some partial general results, but our most important results are in trees 
(finite graphs without simple closed curves). For a tree X, we are able to relate wgd(X) with some other 
interesting properties of X, namely (see Definition 2.1): the number of necessary arcs for covering X; the 
number of end-points of X; the disconnection number of X; the dimension of C(X) and the number n for 
which X is an n-od, see Corollary 3.7.

2. General results

Definition 2.1. Given an integer n ≥ 2, a continuum X is an n-od provided that there exists a subcontinuum 
A of X such that X \A has at least n components. Define

O(X) = sup{n ≥ 2 : X is an n-od}.

The continuum X is irreducible with respect to its subset S, provided that no proper subcontinuum of 
X contains S.

A cardinal number n ≤ ℵ0 is called a disconnection number for the continuum X provided that whenever 
A ⊂ X is such that A has exactly n points, we have that X \ A is not connected. We write D(X) ≤ ℵ0
to mean there is a disconnection number for X. When D(X) ≤ ℵ0, we let Ds(X) denote the smallest 
disconnection number for X.

A point p in a tree X is an end-point of X if X \ {p} is connected, and p is a ramification point of X if 
X \ {p} has at least three components. The set of end-points of X is denoted by E(X) and the cardinality 
of E(X) is denoted by e(X). The set of ramification points of X is denoted by R(X).

Theorem 2.2. Let X be a tree and n ≥ 2, then the following are equivalent.
(a) O(X) = n,
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(b) Ds(X) = n + 1,
(c) e(X) = n,
(d) dim[C(X)] = n.

Proof. By Corollary 3.7 of [4], O(X) = Ds(X) − 1. By Corollary 3.8 of [4], O(X) = e(X). By Theorem 
4.1 of [4], dim[C(X)] = ω(X) (the symbol ω(X) was defined in p. 537 of [4]), and by Theorem 4.3 of [4], 
ω(X) = O(X). Thus, O(X) = dim[C(X)]. �
Proposition 2.3. Let X be a continuum such that n = wgd(X) is a positive integer. Then X does not contain 
(2n + 1)-ods and there exists a subset S of X such that S contains at most 2n points and X is irreducible 
with respect to S.

Proof. Let μ : C(X) → [0, ∞) be a Whitney mapping generated by the mappings f1, . . . , fn : X → [0, 1]. For 
each i ∈ {1, . . . , n}, let pi, qi ∈ X be such that fi(pi) and fi(qi) are the respective minimum and maximum 
of the set fi(X). Let S = {p1, . . . , pn, q1, . . . , qn}. Let A be a subcontinuum of X such that S ⊂ A. Then for 
each i ∈ {1, . . . , n}, fi(A) = [fi(pi), fi(qi)] = fi(X). This implies that μ(A) = μ(X). Since μ is a Whitney 
mapping, A = X. Therefore X is irreducible with respect to S.

In order to show that X does not contain (2n + 1)-ods, first we show that X is not an (2n + 1)-od. 
Suppose to the contrary that there exists a subcontinuum A of X and nonempty pairwise separated subsets 
C1, . . . , C2n+1 of X such that X \ A = C1 ∪ · · · ∪ C2n+1. Since S contains at most 2n points, there exists 
i ∈ {1, . . . , 2n +1} such that S∩Ci = ∅. Then S is contained in the proper subcontinuum A ∪(

⋃
{Cj : j �= i})

of X, which contradicts the irreducibility of X with respect to S.
Now we show that X does not contain (2n + 1)-ods. Let B be a subcontinuum of X. Let m = wgd(B). 

Then m ≤ n, so B is not a (2m + 1)-od. This implies that B is not an (2n + 1)-od. �
Theorem 2.4. Let Z be a compactification of the ray [0, 1) with remainder X such that wgd(X) is finite. 
Suppose that wgd(Z) = n. Let ν : C(Z) → [0, ∞) be a Whitney mapping generated by the mappings 
f1, . . . , fn : Z → [0, 1]. Then

X ⊂
⋃

{f−1
i ({min(fi(X)),max(fi(X))}) : i ∈ {1, . . . , n}}.

Proof. Suppose to the contrary that there exists a point w in the set W = X \ (
⋃
{f−1

i ({min(fi(X)),
max(fi(X))}) : i ∈ {1, . . . , n}}). Let d be a metric for Z. Given i ∈ {1, . . . , n}, let xi, yi ∈ X be such that 
fi(xi) = min(fi(X)) and fi(yi) = max(fi(X)). Then fi(xi) < fi(w) < fi(yi). Thus there exists ε > 0 such 
that for each i ∈ {1, . . . , n}, 3ε < min{fi(yi) − fi(w), fi(w) − fi(xi)}. Let δ > 0 be such that if p, q ∈ Z and 
d(p, q) < 2δ, then for each i ∈ {1, . . . , n}, |fi(p) − fi(q)| < ε.

By the density of [0, 1) in Z, for each i ∈ {1, . . . , n} we can fix points pi, qi ∈ [0, 1) such that d(pi, xi) < δ

and d(qi, yi) < δ. Let

t = max{p1, . . . , pn, q1, . . . , qn}.

Since t < 1, there exists w0 ∈ [t, 1) such that d(w, w0) < δ. Take w1 ∈ (w0, 1) such that 
diameter([w0, w1]) < δ (this diameter is taken in Z). Let A = [0, w0] and B = [0, w1]. Then A and B
are subcontinua of Z such that A � B.

We claim that μ(A) = μ(B). In order to prove this, let i ∈ {1, . . . , n}. The facts that d(pi, xi) < δ and 
d(qi, yi) < δ imply that |fi(pi) − fi(xi)| < ε and |fi(qi) − fi(yi)| < ε. Given p ∈ [w0, w1], d(p, w0) < δ, 
so d(p, w) < 2δ and |fi(p) − fi(w)| < ε. Since fi(xi) < fi(w) − 3ε < fi(w) + 3ε < fi(yi), we have that 
fi(pi) < fi(p) < fi(qi). Since fi(pi), fi(qi) ∈ fi(A), we conclude that fi(p) ∈ fi(A). We have shown that 
fi([w0, w1]) ⊂ fi(A). This implies that fi(B) ⊂ fi(A). Thus fi(A) = fi(B). Since this equality holds for 
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each i ∈ {1, . . . , n}, we conclude that μ(A) = μ(B). This contradicts the fact that μ is a Whitney mapping 
and completes the proof of the theorem. �
Theorem 2.5. Let Z be a continuum and let h : Z → [0, 1] be a mapping satisfying:
(a) for each t ∈ [0, 1], h−1(t) is connected,
(b) there exists a finite set F ⊂ [0, 1] such that h−1(t) is non-degenerate if and only if t ∈ F ,
(c) for every subcontinuum A of Z and every t ∈ [0, 1], either A ⊂ h−1(t) or h−1(t) ⊂ A or A ∩h−1(t) = ∅.

Then wgd(Z) ≤ max{wgd(h−1(t)) : t ∈ F} + 1.

Proof. We may assume that wgd(h−1(t)) is finite for each t ∈ F . Set r = max{wgd(h−1(t)) : t ∈ F}. 
For each t ∈ F , let Bt = h−1(t) and let f (t)

1 , . . . , f (t)
r : Bt → [0, 1] be mappings that generate a Whitney 

mapping μt : C(Bt) → [0, ∞) (if wgd(Bt) < r, we can repeat some mappings f (t)
j ).

For each j ∈ {1, . . . , r}, consider the mapping gj : h−1(F ) → [0, 1] given by gj(p) = f
(t)
j (p), if p ∈ h−1(t)

(where t ∈ F ). Since gj is defined in the union of a finite family of pairwise disjoint closed subsets and it 
is continuous on each of these sets, we have that gj is continuous. By Tietze’s Extension Theorem, there 
exists a continuous extension Gj of gj defined on the continuum Z.

Given a subcontinuum A of Z, define μ : C(Z) → [0, ∞) by

μ(A) = length(h(A)) + length(G1(A)) + · · · + length(Gr(A)).

In order to check that μ is a Whitney mapping, take subcontinua A and B of Z such that A � B. First, we 
consider the case that B ⊂ h−1(t) for some t ∈ F . Given b ∈ B and j ∈ {1, . . . , r}, Gj(b) = gj(b) = f

(t)
j (b). 

Then μ(B) = length(h(B)) + length(G1(B)) + · · · + length(Gr(B)) = length(h(B)) + length(f (t)
1 (B)) +

· · ·+ length(f (t)
r (B)) = length(h(B)) +μt(B) > length(h(A)) +μt(A) = μ(A). Thus μ(B) > μ(A). Now, we 

consider the case that B is not contained in any set of the form h−1(t) (t ∈ F ). Then h(B) is non-degenerate 
and by (c), B = h−1(h(B)). If h(A) is non-degenerate, then A = h−1(h(A)). Hence h−1(h(A)) � h−1(h(B)). 
This implies that h(A) � h(B) and length(h(A)) < length(h(B)). Thus μ(A) < μ(B). Therefore, μ is a 
Whitney mapping.

This completes the proof that wgd(Z) ≤ r + 1. �
Corollary 2.6. Let Z be a compactification of the ray [0, ∞) with remainder X. Then wgd(X) ≤ wgd(Z) ≤
wgd(X) + 1.

Corollary 2.7. Let Z be a compactification of the real line R with disconnected remainder X1 ∪ X2, where 
X1 and X2 are continua. Then

max{wgd(X1), wgd(X2)} ≤ wgd(Z) ≤ max{wgd(X1), wgd(X2)} + 1.

Problem 2.8. Are there a continuum X and a compactification Z of the ray [0, 1) with remainder X such 
that wgd(X) = wgd(Z)?

With respect to Problem 2.8, in the next section (Theorem 3.9), we prove that in the case that X is a 
tree, we have that wgd(Z) = wgd(X) + 1.

3. Trees

Given points p and q in a tree X, let pq denote the unique arc joining p and q in X, if p �= q, and 
pq = {p}, if p = q.
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Theorem 3.1. Let X be an arcwise connected continuum such that wgd(X) is finite. Then X is a tree.

Proof. By Proposition 2.3, X is irreducible with respect to a finite set S. Since X is arcwise connected, it 
is possible to construct a tree T in X containing S. Thus X = T is a tree. �
Corollary 3.2. Let X be a continuum such that wgd(X) is finite. If A is an arcwise connected subcontinuum 
of X, then A is a tree. In particular, X does not contain simple closed curves.

Theorem 3.3. Let X be a tree such that e(X) ≤ 2n. Then X is the union of n arcs.

Proof. We prove this theorem by induction. If e(X) ≤ 2, then X is an arc and we are done.
Suppose that the assertion holds for n. Suppose that X is a tree and 3 ≤ e(X) ≤ 2(n +1). Then 2 ≤ n +1. 

Fix two distinct end-points e1 and e2 of X. Suppose that a1 and a2 are ramification points of X such that 
a1e1 and a2e2 are edges of X. Consider the tree T = X \ ((a1e1 \ {a1}) ∪ (a2e2 \ {a2})).

Claim 1. If e ∈ E(T ), then either e ∈ E(X) \ {e1, e2} or a1 = e = a2.

We prove this claim. Suppose to the contrary that either e /∈ E(X) \ {e1, e2} and a1 �= a2 or a1 = a2 �= e. 
Since e1, e2 /∈ T , we have that e /∈ E(X). If e /∈ R(X), then there exists an edge L = b1b2 in X such that 
e ∈ L \ {b1, b2}. Since L /∈ {a1e1, a2e2}, we have that L ⊂ T and e /∈ E(T ), a contradiction. Thus e ∈ R(X). 
If e /∈ {a1, a2}, then e ∈ R(T ) which is also a contradiction. Then we may assume that e = a1. This implies 
that a1 �= a2. Since at least three edges of X contain a1, and only one of them is removed to obtain T , we 
have that e = a1 /∈ E(T ), this contradiction completes the proof of the claim.

We consider two cases.
Case 1. E(T ) ⊂ E(X) \ {e1, e2}.
In this case, E(T ) has at most 2n elements. By the induction hypothesis, there exist n subarcs α1, . . . , αn

of T such that T = α1∪ . . .∪αn. Let αn+1 be the unique arc in X joining e1 to e2. Then a1e1∪a2e2 ⊂ αn+1. 
Thus X = α1 ∪ . . . ∪ αn+1. This completes this case.

Case 2. There exists an end-point e of T such that e /∈ E(X) \ {e1, e2}.
Since e ∈ T , e /∈ {e1, e2}, so e /∈ E(X). By Claim 1, e = a1 = a2. Let a3 be a vertex of T such that ea3

is an edge of T . Let S = T \ (ea3 \ {a3}). Then S is either a one-point set or S is a tree. In the case that 
S is a one-point set, we have that X is a simple triod. Then X can be covered by 2 arcs and 2 ≤ n + 1
and we are done. So we suppose that S is a tree. In this case, a3 is not an end-point of S. This implies 
that E(T ) = E(S) ∪ {e}. By Claim 1, E(S) ⊂ E(X) \ {e1, e2}. By the induction hypothesis, there exist n
subarcs α1, . . . , αn of S such that S = α1 ∪ . . . ∪ αn.

We may assume that a3 ∈ αn. If a3 is an end-point of αn, we define the arcs βn = αn ∪ a3a1 ∪ a1e1 and 
βn+1 = a2e2. Clearly, X = α1 ∪ . . . ∪ αn−1 ∪ βn ∪ βn+1.

If a3 is not an end-point of αn, then there exist two subarcs γ1, γ2 of αn such that αn = γ1 ∪ γ2 and 
γ1 ∩ γ2 = {a3}. In this case, we define βn = γ1 ∪ a3a1 ∪ a1e1 and βn+1 = γ2 ∪ a3a2 ∪ a2e2. Clearly, 
X = α1 ∪ . . . ∪ αn−1 ∪ βn ∪ βn+1.

This completes the induction and the proof of the theorem. �
Given a tree X and an arc α ⊂ X, let rα : X → α be the first point retraction, that is, for each p ∈ X, 

rα(p) is the unique point in α such that the intersection of α and the arc joining p to rα(p) contains only 
the point rα(p). Note that if q ∈ α is such that (rα)−1(q) is non-degenerate, then q is either a ramification 
point of X or an end-point of α.

Theorem 3.4. Let X be a tree. Suppose that X is a union of at most n arcs. Then wgd(X) ≤ n.
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Proof. Let α1, . . . , αn be arcs in X whose union is X. For each i ∈ {1, . . . , n} let fi : αi → [0, 1] be a 
homeomorphism, and let gi : X → [0, 1] be given by gi = fi ◦ rαi

: X → [0, 1]. Define μ : C(X) → [0, ∞) by

μ(A) = length(g1(A)) + · · · + length(gn(A)).

We check that μ is a Whitney mapping. Let A, B ∈ C(X) be such that A � B. Since B\A is infinite, there 
exists a point b ∈ B \A such that b is not a ramification point of X and b is not an end-point of any αi. Take 
j ∈ {1, . . . , n} be such that b ∈ αj . By the choice of b, {b} = (rαj

)−1(b). This implies that gj(b) /∈ gj(A). 
Since gj(A) and gj(B) are subintervals of [0, 1] we conclude that length(gj(A)) < length(gj(B)). Thus 
μ(A) < μ(B). Therefore μ is a Whitney mapping and wgd(X) ≤ n. �
Lemma 3.5. Let X be a tree. Let μ : C(X) → [0, ∞) be a Whitney mapping generated by the mappings 
g1, . . . , gm. For each i ∈ {1, . . . , m}, let pi, qi be points of X such that gi(pi) = min(gi(X)) and gi(qi) =
max(gi(X)). Then E(X) ⊂ {p1, . . . , pm, q1, . . . , qm}.

Proof. Given i ∈ {1, . . . , m}, if pi = qi, then gi is a constant mapping, so if we omit gi, μ is still a Whitney 
mapping. So we may assume that pi �= qi. Let αi be the unique arc in X joining pi to qi.

We define a sequence of subtrees T1, . . . , Tm of X such that for each i ∈ {1, . . . , m},
(i) if i < m, then Ti ⊂ Ti+1,
(ii) the set of end-points of Ti is contained in {p1, . . . , pi} ∪ {q1, . . . , qi},
(iii) αi ⊂ Ti.

Let T1 = α1. Suppose that T1, . . . , Tk have been constructed and k < m.
If Tk ∩ αk+1 �= ∅, then define Tk+1 = Tk ∪ αk+1. If Tk ∩ αk+1 = ∅, take the minimum subarc β in X

joining a point in Tk to a point in αk+1, and define Tk+1 = Tk ∪ β ∪ αk+1.
Note that in both cases, each end-point of Tk+1 is either an end-point of Tk or an end-point of αk+1. 

Thus Tk+1 satisfies (ii).
This completes the construction of the trees T1, . . . , Tm.
Since Tm contains all the arcs αi, then Tm is a subcontinuum of X containing all the points pi and qi. 

This implies that for each i ∈ {1, . . . , m}, gi(Tm) = gi(X). Then μ(Tm) = μ(X). Since μ is a Whitney 
mapping, we conclude that Tm = X. Therefore E(X) ⊂ {p1, . . . , pm, q1, . . . , qm}. �
Theorem 3.6. Let X be a tree and n ∈ N. Then the following are equivalent.
(a) wgd(X) ≤ n,
(b) X is the union of n arcs,
(c) e(X) ≤ 2n.

Proof. By Theorem 3.4, (b) implies (a); by Theorem 3.3, (c) implies (b); and (a) implies (c) follows from 
Lemma 3.5. �
Corollary 3.7. Let X be a tree and let n ∈ N. Then the following are equivalent.
(a) wgd(X) = n,
(b) n = min{m ∈ N : X can be covered with m arcs},
(c) e(X) ∈ {2n − 1, 2n},
(d) O(X) ∈ {2n − 1, 2n},
(e) dim[C(X)] ∈ {2n − 1, 2n},
(f) Ds(X) ∈ {2n, 2n + 1}.

Proof. In the case that n ≥ 2, we have that 2n − 1 ≥ 3, so this result follows from Theorems 2.2 and 3.6. 
In the case n = 1, 2n − 1 = 1 and 2n = 2. Since there is not a tree X for which e(X) = 1 or O(X) = 1 or 
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dim[C(X)] = 1 or Ds(X) = 2, in this case, the conditions (c)-(f) become 2 = e(X) = O(X) = dim[C(X)]
and Ds(X) = 3. While the conditions (a) and (b) become wgd(X) = 1 and the tree X can be covered by an 
arc. Thus by Theorems 2.2 and 3.6, the conditions are also equivalent for n = 1. Note that (topologically) 
the only continuum satisfying any of these conditions is the interval [0, 1]. �

Since, for each n ∈ N, there exists a finite number of continua X such that Ds(X) = n (see page 158 of 
[6]), by Corollary 3.7, we have the following corollary.

Corollary 3.8. For each n ∈ N, there exists a finite number of trees X such that wgd(X) = n.

Theorem 3.9. Let X be a tree and let Z be a compactification of the ray [0, 1) with remainder X. Then 
wgd(Z) = wgd(X) + 1.

Proof. By Theorem 2.4, we only need to show that wgd(X) �= wgd(Z). Suppose to the contrary that 
k = wgd(X) = wgd(Z). Let f1, . . . , fk : Z → [0, 1] be mappings that generate the Whitney mapping 
ν : C(Z) → [0, ∞).

For each i ∈ {1, . . . , k}, let mi = min(fi(X)) and Mi = max(fi(X)). Since wgd(X) = k, mi < Mi. Take 
points pi ∈ X ∩ f−1

i (mi) and qi ∈ X ∩ f−1
i (Mi). Let αi be the only arc in X joining pi and qi.

Set D = {p1, . . . , pk, q1, . . . , qk}. By Lemma 3.5, E(X) ⊂ D. Set G = X ∩ (f−1
1 ({m1, M1}) ∪ . . . ∪

f−1
k ({mk, Mk})).

We prove that X is not a subset of G. By Corollary 3.7, e(X) ∈ {2k−1, 2k}. In the case that e(X) = 2k, 
since E(X) ⊂ D, we have that E(X) = D. In this case, we are going to prove that G = D. By definition 
D ⊂ G. Take u ∈ G, by symmetry, we may assume that u ∈ f−1

1 (m1). Then we apply Lemma 3.5 to the 
set D′ = {u, p2, . . . , pk, q1, . . . , qk}, to obtain that E(X) ⊂ D′. Since e(X) = 2k, we have that E(X) = D′, 
so D = D′, we conclude that u = p1 ∈ D. We have shown that G ⊂ D and G = D. Since G is finite, we 
conclude that X �⊂ G.

Now, we consider the case that e(X) = 2k − 1. Fix a point z ∈ X \ E(X). In the case that z /∈ G, we 
are done. Suppose then that z ∈ G. By symmetry we may assume that f1(z) = m1. Let α′

1 be the unique 
arc in X joining z to q1. We apply Lemma 3.5 to the set D′ = {z, p2, . . . , pk, q1, . . . , qk}, to obtain that 
E(X) ⊂ D′. Since E(X) contains 2k − 1 elements and z /∈ E(X), we obtain that E(X) = D′ \ {z}. By 
the connectedness of α′

1, we can choose a point w ∈ α′
1 \ f−1

1 ({m1, M1}). Then w /∈ {z, q1}. Note that 
w /∈ E(X). We claim that w /∈ G. Suppose to the contrary that w ∈ G. By the choice of w, we have that 
f1(w) /∈ {m1, M1}. Then, by symmetry, we may assume that f2(w) = m2. Then we may apply Lemma 3.5
to obtain that E(X) is contained in the set D′′ = {z, w, p3, . . . , pk, q1, . . . , qk}. This is impossible since E(X)
has 2k−1 elements and D′′ contains at most 2k−2 end-points of X. We have shown that w /∈ G. This ends 
the proof that X �⊂ G. This contradicts Theorem 2.4 and ends the proof that wgd(X) �= wgd(Z). Therefore 
wgd(Z) = wgd(X) + 1. �
4. More examples

The proof of the following theorem has similar ideas as those used in Theorem 2.4, this result is useful 
to determine that for some important continua the Whitney generated degree is infinite.

Theorem 4.1. Let X be a continuum such that there exists a one-to-one mapping h : [0, ∞) → X satisfying 
that h([1, ∞)) is dense in X. Then wgd(X) is infinite.

Proof. Suppose the contrary. Then there exists a Whitney mapping μ : C(X) → [0, ∞) generated by 
a finite family of mappings f1, . . . , fn : X → [0, 1]. For each i ∈ {1, . . . , n}, let mi = min(fi(X)) and 
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Mi = max(fi(X)). We assume that mi < Mi (in the case that mi = Mi, we can omit fi and μ is still a 
Whitney mapping). Fix points xi, yi ∈ X such that fi(xi) = mi and fi(yi) = Mi. Set p = h(1) and let d be 
a metric for X. Let ε = 1

2min({r > 0 : r = fi(p) −mi for some i ∈ {1, . . . , n}} ∪ {r > 0 : r = Mi − fi(p) for 
some i ∈ {1, . . . , n}}. Note that ε > 0. Let δ > 0 be such that if x, y ∈ X and d(x, y) < 2δ, then for each 
i ∈ {1, . . . , n}, |fi(x) − fi(y)| < ε.

By the density of h([1, ∞)) in X, for each i ∈ {1, . . . , n} we can fix numbers si, ti ∈ [1, ∞) such that 
d(h(si), xi) < δ and d(h(ti), yi) < δ. Let R = max({s1, . . . , sn} ∪ {t1, . . . , tn}) and A = h([1, R]). Choose 
a number R0 ∈ [0, 1) such that diameter(h([R0, 1])) < δ and set B = h([R0, R]). Then A and B are 
subcontinua of X such that A � B.

We claim that μ(A) = μ(B). In order to do this, let i ∈ {1, . . . , n}. Since d(xi, h(si)) < δ, we have that 
|mi − fi(h(si))| = |fi(xi) − fi(h(si))| < ε. Thus min(fi(A)) < mi + ε. Similarly, Mi − ε < max(fi(A)).

Given s ∈ [R0, 1] and i ∈ {1, . . . , n}, d(h(s), p) < δ, so |fi(h(s)) − fi(p)| < ε.
In the case that mi < fi(p) < Mi, by the definition of ε, we have that min(fi(A)) < mi + ε < fi(p) − ε <

fi(h(s)) < fi(p) + ε < Mi − ε < max(fi(A)). Thus fi(h(s)) ∈ fi(A).
In the case that mi = fi(p), we have that min(fi(A)) = mi ≤ fi(h(s)) < fi(p) +ε < Mi−ε < max(fi(A)). 

Thus, fi(p) ∈ fi(A). Similarly, in the case that fi(p) = Mi, we obtain that fi(p) ∈ fi(A).
We have shown that for each i ∈ {1, . . . , n}, fi([R0, 1]) ⊂ fi(A), and then fi(B) ⊂ fi(A). This implies 

that μ(A) = μ(B) and contradicts the fact that μ is a Whitney mapping. �
Since the Buckethandle continuum [6, 2.9] and the solenoids [6, 2.9] satisfy the hypothesis of Theorem 4.1, 

we obtain the following consequence.

Corollary 4.2. Let X be either the Buckethandle continuum or a solenoid. Then wgd(X) is infinite.

5. Problems

Problem 5.1. Let P be the pseudo-arc [6, 1.23], what is the value of wgd(P )?

Problem 5.2. Is the unit interval [0, 1] the unique continuum X for which wdg(X) = 1?

Problem 5.3. Is the unit interval [0, 1] the unique hereditarily decomposable irreducible continuum X for 
which wdg(X) = 1?

It is easy to see that, with the usual metric, the diameter mapping is a Whitney mapping from C([0, 1])
onto [0, 1]. So, the following problem is related to the topic of this paper (Problem 1 of [2]).

Problem 5.4. Is the arc the only continuum X for which there exists a metric such that the diameter mapping 
from C(X) into [0, ∞) is a Whitney mapping?
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