Búsqueda de producción de pares de squark top

R. Magaña-Villalba UCSB

Motivation

 "Natural SUSY" resuelve el problema de jerarquía mediante squarks top ligeros que cancelan las correcciones radiativas del quark top a la masa del Higgs.

$$\underbrace{H}_{H} \left(\underbrace{t}_{H} \right)$$

 Búsqueda directa de producción de pares de squark top.

CMS Detector

CMS es un detector de propósito general ubicado en el P5 del LHC en el CERN

CMS Collaboration - R. Magana/UCSB - 03/22/13

CMS Detector

Luminosidad integrada

CMS Integrated Luminosity, pp, 2012, $\sqrt{s} = 8$ TeV

Signature & Strategy

- Producción de pares de squark top
- Modos de decaimiento del stop:

El canal semileptónico tiene gran fracción de decaimiento y suprime el ruido de QCD

CMS Collaboration - R. Magana/UCSB - 03/22/13

Signature & Strategy

- Seleccionar eventos con 1 lepton >=4 jets (1b-tag) y Energía perdida.
 - Ruido: ll->l+jets, W+jets -> MT(l, nu) < M_W
- Reducir ruido al pedir grande MT
 - tt->ll se convierte en el ruido principal -> reducir al aplicar un veto a eventos con un track aislado.
- Definir regiones de señal a través de cortes en la Energía perdida
- El ruido es estimado de MC después de normalizar con datos en las regiones de control
- Búsqueda de un exceso de eventos "Cut and Count"

- Definimos diferentes regiones de señal para ser sensibles a differentes masas del stop y/o del neutralino.
- Regiones definidas por diferentes cortes en MT(l, nu) y MET
- Diferentes ruidos siguen presentes en la región de señal, principal ruido es tt-> l+l-
- "Blind" Analisis

Signal Region	Minimum <i>M</i> _T [GeV]	Minimum <i>E</i> ^{miss} _T [GeV]
SRA	150	100
SRB	120	150
SRC	120	200
SRD	120	250
SRE	120	300
SRF	120	350
SRG	120	400
	· · · · · · · · · · · · · · · · ·	

- tt -> l+l- (~75-80% del total)
 - Dominante después del corte en MT
 - Suprimido por un veto en eventos con un track aislado
 - Diferentes categorías dependiendo como se "pierde"el segundo lepton
 - Fuera de aceptancia eta > 2.5 pt < 10 GeV
 - Fallo de la isolation
 - tau -> 1-prong
 - taut -> 3-prong

- Single lepton (~15-20% del total)
 - Ruidos con W-> lnu -> MT(l,nu) < MW
 - Contribuciones -> producción de W offshell,
 - Efectos de resolución de jets

- Rare (~5% del total)
 - ttV(principal), VV, VVV, tW, Z+jets
 - Estimación de Monte Carlo con 50% incertidumbre
 - Ruido de QCD es despreciable

- Ruido "Rare" suficientemente pequeño para ser predicho por el MC con 50% de incertidumbre.
- tt dilepton y w+jets es normalizado usando los datos en la región de MT(l, MET) ~ MW.
- Se definen regiones de control:
 - CR1 requerimos 0 b-jets, dominado por W+jets
 - CR5 invertimos el veto a tracks aislados, dominado por ttbar dilepton

CMS Collaboration - R. Magana/UCSB - 03/22/13

CR10 b-jets(dominado por W+jets)

Esta región de control nos permite comparar la modelación del Monte Carlo de W+jets con los datos.

CR5 track aislado(dominado por tt->l+l-)

Esta region nos permite comparar el Monte Carlo de ttbar dilepton.

Otras correcciones al Monte Carlo

Step 0) Correct madgraph for incorrect BF(W→ℓv) (!!!)

- BF(W→ℓv) is wrong in Madgraph and MC@NLO
- Alters tt→ℓℓ / tt→ℓ+jets ratio by 4%

• Step 1) Correct for (possible) mis-modeling of ISR/FSR jets

- Additional ISR/FSR jets required to pass njets ≥ 4 requirement
- Apply correction factors based on data/MC comparison in ttbar dilepton control sample
- Reduces tt→ ll prediction by ~15%

Step 2) Overall background normalization

- Based on M_T peak region, <u>before</u> application of isolated track veto → requires that isolated track veto efficiency is well-reproduced in MC (see step 4)
- Reduces tt→ ll prediction by 8% (SRA), 15% (SRB)

Step 3) Estimate theoretical/modeling uncertainties with various generators

- Madgraph (nominal) vs. MCatNLO vs. Powheg vs. Pythia
- Very top mass, Q2 scale, ME-PS matching parameters, PDF/α_s
- Resulting uncertainty: 7% (SRA), 12% (SRB)

Step 4) Estimate uncertainties from reconstruction effects

- Isolated track veto efficiency uncertainty is dominant → compare data vs. MC with Z T&P
- Resulting uncertainty: 7%

Errores sistemáticos

Source	SRA	SRB	SRC	SRD	SRE	SRF	SRG
$M_{\rm T}$ peak data and MC (stat)	0.9	1.7	2.9	4.7	7.0	10.1	15.4
W+jets cross-section	1.7	2.3	3.0	3.9	4.3	4.3	5.1
K_3 and K_4 N_{jets} scale factors	1.9	2.0	2.1	2.1	2.0	1.9	1.8
$t\bar{t} \rightarrow \ell\ell$ (CR4 and CR5 tests)	3.1	6.5	10.3	17.3	26.1	24.7	24.5
2nd lepton veto	1.2	1.3	1.4	1.4	1.3	1.2	1.2
$t\bar{t} \rightarrow \ell\bar{\ell}$ (stat)	1.2	1.6	3.0	5.1	7.4	11.1	13.6
top tail-to-peak ratio	12.5	8.7	8.5	6.5	7.7	9.5	6.0
W+jets tail-to-peak ratio	6.4	5.2	5.7	6.6	9.6	13.3	17.6
rare cross-sections	2.0	2.2	3.2	4.9	6.4	6.2	7.6
total	14.9	12.9	15.9	21.8	31.7	34.2	38.2

Results

Results

Sample	SRA	SRB	SRC	SRD	SRE	SRF	SRG			
Muon										
$t\bar{t} ightarrow \ell\ell$	331 ± 22	183 ± 21	59.5 ± 10.0	23 ± 6	9.0 ± 3.9	3.7 ± 1.8	2.2 ± 1.2			
$t\bar{t} \rightarrow \ell + jets \& single top (1\ell)$	148 ± 75	67.9 ± 28.9	16.1 ± 9.1	4.7 ± 3.2	1.8 ± 1.6	0.9 ± 0.9	0.4 ± 0.5			
W+jets	19.2 ± 4.5	10.0 ± 2.2	3.11 ± 0.98	1.2 ± 0.6	0.6 ± 0.4	0.4 ± 0.3	0.2 ± 0.2			
Rare	33.2 ± 16.6	22.7 ± 11.4	9.00 ± 4.50	4.8 ± 2.4	2.9 ± 1.5	1.2 ± 0.6	1.0 ± 0.5			
Total	531 ± 80	284 ± 37	87.7 ± 14.2	33 ± 7	14 ± 5	6.1 ± 2.1	3.8 ± 1.4			
Data	494	254	76	31	8	2	1			
Electron										
$t\bar{t} ightarrow \ell\ell$	248 ± 17	144 ± 17	51.1 ± 8.8	16 ± 5	5.5 ± 2.5	2.5 ± 1.3	1.3 ± 0.7			
$t\bar{t} \rightarrow \ell + jets \& single top (1\ell)$	108 ± 55	51.8 ± 22.1	12.9 ± 7.3	3.0 ± 2.0	1.2 ± 1.1	0.7 ± 0.7	0.4 ± 0.5			
W+jets	14.3 ± 3.3	7.50 ± 1.66	2.43 ± 0.77	0.8 ± 0.4	0.4 ± 0.3	0.3 ± 0.2	0.1 ± 0.2			
Rare	25.8 ± 12.9	15.8 ± 7.9	7.10 ± 3.55	2.9 ± 1.5	0.7 ± 0.4	0.3 ± 0.2	0.1 ± 0.1			
Total	396 ± 59	219 ± 29	73.5 ± 11.9	23 ± 5	7.8 ± 2.7	3.9 ± 1.5	1.9 ± 0.9			
Data	367	202	74	30	15	7	2			
Muon+Electron Combined										
$t\bar{t} ightarrow \ell\ell$	579 ± 38	328 ± 37	111 ± 18	39 ± 10	14 ± 6	6.2 ± 2.9	3.5 ± 1.8			
$t\bar{t} \rightarrow \ell + jets \& single top (1\ell)$	256 ± 131	120 ± 51	29.0 ± 16.4	7.7 ± 5.1	3.1 ± 2.7	1.7 ± 1.6	0.8 ± 1.0			
W+jets	33.5 ± 8.2	17.5 ± 4.5	5.54 ± 1.98	2.0 ± 1.0	1.0 ± 0.7	0.7 ± 0.6	0.3 ± 0.4			
Rare	59.0 ± 29.5	38.5 ± 19.3	16.1 ± 8.1	7.7 ± 3.9	3.6 ± 1.8	1.5 ± 0.8	1.1 ± 0.6			
Total	927 ± 138	504 ± 65	161 ± 26	56 ± 12	22 ± 7	10 ± 3	5.7 ± 2.2			
Data	861	456	150	61	23	9	3			

No se observa un exceso de eventos

CMS Collaboration - R. Magana/UCSB - 03/22/13

Limits t -> t X0

- Dado que no se observa ningún exceso de eventos calculamos el límite de la sección eficaz, esto depende del modelo que escojamos.
- Calculamos el limite esperado para cada valor de mstop y mlsp.
- Utilizamos la región que de el mejor límite para calcular el límite observado.

Limits t -> t X0

Limits t -> b X+

Realizamos el mismo procedimiento para el modelo t-> b X+ En este caso debemos considerar también la masa del chargino

CMS Collaboration - R. Magana/UCSB - 03/22/13

Limits t -> b X+

- Los resultados se interpretan en dos opciones:
- x=3/4: prueba masas del stop quark ~160GeV -420GeV par mlsp < 120 GeV
- x=1/2: prueba masas del stop quark ~260GeV -340GeV para mlsp < 80 GeV

Mejoras a futuro

- Hadronic top reconstruction
- Nuevas variables
- Analysis multivariado.

Hadronic top reconstruction

La reconstrucción del top hadrónico puede ayudar a separar T2tt de T2bw y reducir el ruido ttba-> dilepton

La reconstrucción se hace como sigue:

- 1. Se hacen todas las posibles combinaciones de 3 jets utilizando los 6 jets con mayor pt.
 - a. Dos jets (j_1, j_2) se combinan para producir el W.
 - b. Se restringe la masa de la suma de los jets a ser la masa del W.
 - c. Se agrega otro jet (j_b) para reconstruir el top.
 - d. La combinación de estos tres jets forman un candidato
- 2. Se pide que todos los jets tengan p_t>30.
- 3. j_b debe ser b-tagged o uno de los tres primeros jets.
- 4. Se busca el chi² más pequeño del evento.

Variables al estilo MT2

Otras variables cinematicas

La variable HT(SSM)/HT(OSM).

- SSM = mismo lado que la MET
- OSM = lado opuesto de la MET
- Esta variable muestra gran poder de separacion.

Probamos las variables clasicas de formas de eventos

- Trust
- Sphericity
- circularity

... y no las encontramos particularmenete utiles.

Análisis Multivariado

- Nuevas variables cinemáticas para mejorar la separación
- Integraremos las nuevas variables mediante un análisis multivariado

Las variables que seran agregadas al análisis multivariado seran

- 1. Missing ET
- 2. Lepton Pt
- 3. chi^2
- 4. mt2w
- 5. HTSSM/HT
- 6. ..

MT no sera incluido en elMVA

La estrategia sera similar a lo presentado pero con un corte en MVA en lugar de cortes en MET Mantendremos el analisis de cortes

Mantendremos el analísis de cortes simples para comparacion

La optimización del mva será en las diferentes regiones del espacio de masas masa-lsp masa-stop. Además optimizaremos para T2tt y T2bw

Resumen

- Se buscaron stop quarks en el canal semileptónico usando 9.7 fb^-1
- No se ha observado exceso
- Los resultados pruebas stop quarks con masa hasta algunos cientos de GeV
- Estamos en rango en el interesante rango dado por la "Natural SUSY"
- Nuevas mejoras y más luminosidad para mejorar los resultados.
- Los resultados (de ser aprobados) de estas mejoras serán presentados en LHCP conference en Abril.

Stay Tuned !