Propiedades de fragmentación de jets en colisiones hadrónicas

Hermes León Vargas

Instituto de Física, UNAM

Febrero 8, 2013 BUAP

Jets en colisiones de hadrones

Jet: Grupo colimado de partículas producidas por la hadronización de partones Guarks Gluones

QCD predice diferentes propiedades para los jets iniciados por quarks y gluones

$$\begin{array}{c|c} \begin{array}{c} \begin{array}{c} g \\ \hline q_i \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} g \\ \hline q_i \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} g \\ \hline q_i \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} g \\ \hline q_i \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} g \\ \hline q_i \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} g \\ \hline q_i \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} G \\ \hline q_i \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} G \\ \hline q_i \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} G \\ \hline q_i \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} G \\ \hline q_i \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \begin{array}{c} \begin{array}{c} G \\ \hline G \\ \hline T_F = 1/2 \end{array} \end{array} \end{array}$$

Jets y predicciones de pQCD

Excelente coincidencia entre la predicción teórica (pQCD) y el experimento

Jets en colisiones e⁺e⁻

Las colisiones electron-positron proveen la evidencia experimental del portador de la fuerza fuerte: el gluón

Jets en colisiones de hadrones

Los jets producidos en colisiones hadronicas son causados por la dispesión fuerte de los partones que forman a los hadrones

Colisión de objetos compuestos —> estructura de eventos compleja

Identificación de jets con conos

Los jets son círculos en el espacio η - ϕ ($\eta = -\ln \tan \left(\frac{\theta}{2}\right)$)

centrados alrededor del eje del jet ($\eta^{\text{Jet}}, \varphi^{\text{Jet}}$) con radio $\mathrm{R} = \sqrt{\eta^2 + \phi^2}$

Propiedades del jet:

¿Cómo se identifican los jets?

El uso de iniciadores hace a los algoritmos más simples pero...

Produce problemas para comparar jets medidos en el experimento con las predicciones teóricas

Collinear e infrared safety \rightarrow la teoría produce ∞

Si el algoritmo es "collinear safe" el resultado final no debe cambiar

Identificación de jets con conos

Los experimentos en el LHC usan algoritmos que son "collinear & infrared safe"

Jets en colisiones proton-proton y de iones pesados

- Pp Caracterización de jets
 Fragmentacion de partones en el vacío
 Prueba exp. de pQCD

Jets en colisiones proton-proton y de iones pesados

Jets en colisiones proton-proton y de iones pesados

H. León Vargas

Seminario FCFM-BUAP

ALICE en el LHC

- ~ 1000 Colaboradores
- ~ 30 Paises
- ~ 100 Instituciones

El LHC prooverá: colisiones pp hasta con \sqrt{s} = 14 TeV colisiones Pb-Pb hasta con $\sqrt{s_{\rm NN}}$ = 5.5 TeV

El experimento ALICE

La observable de jets *NT90*

 Propuesta para discriminar jets producidos por quarks o gluones.

Phys. Rev. D 44 (1991) 2025

 Ordenar las trazas en los jets en p_T decreciente.

 Sumar el p_T de las trazas hasta que 90% del p_T del jet es recuperado.

<u>NT90 es el mínimo</u>
 <u>numero de trazas</u>
 <u>necesarias para recuperar</u>
 <u>90% del p_T del jet</u>.

La observable de jets *NT90*

 Propuesta para discriminar jets producidos por quarks o gluones.

Phys. Rev. D 44 (1991) 2025

Ordenar las trazas en los jets en p_T decreciente.

 Sumar el p_T de las trazas hasta que 90% del p_T del jet es recuperado.

<u>NT90 es el mínimo</u>
 <u>numero de trazas</u>
 <u>necesarias para recuperar</u>
 <u>90% del p_T del jet</u>.

|La observable de jets *SMCPJ* $\langle \delta R_c^2 angle$

 $\langle \delta R_c^2
angle$ cuantifica la distribución espacial de partículas dentro del jet

A1

Estudio inclusivo de observables de jets y estimación de la razón quark/gluon

H. León Vargas (for the ALICE Collaboration) International Journal of Modern Physics E Vol. 20, No. 7 (2011) 1561-1565

NT90 : Datos y modelos MC

- Dos diferentes valores de corte de $p_{\rm T}$ usados en los algoritmos
- Los modelos reproducen mejor las mediciones cuando $p_{T}^{Track} > 1 \text{ GeV}/c$
- Observación similar en el caso de $\langle \delta R_c^2
 angle$

Estimación de la razón q/g

- Hacer uso de las diferencias de fragmentación de los jets producidos por quark y gluones
- Estimar la razón q/g como función del p_T de los jets

Estimación de q/g: NT90

$$\chi^{2} = \sum_{i=1}^{N} \left(\frac{1 \sqrt{1.90_{\text{Data}(i)} - 1.7.90_{\text{MC}(i)}}}{\sqrt{E_{\text{Data}(i)}^{2} + E_{\text{MC}(i)}^{2}}} \right) \qquad NT90_{\text{MC}} = \alpha f_{\text{Q}} + (1 - \alpha) f_{\text{G}}$$

Resumen de A1

- Estudié *NT90* y $\langle \delta R_c^2
 angle$ usando dos valores de corte $p_{\mathrm{T}}^{\mathrm{Track}}$
 - \circ Los modelos reproducen mejor los resultados experimentales cuando $p_T^{Track} > 1 \text{ GeV}/c$ para ambas observables.
- Desarrollé un método para estimar la razón $q/g(p_T^{Jet})$

Dependencia de las observables de jets con la multiplicidad del evento

H. León Vargas (for the ALICE Collaboration) Journal of Physics: Conference Series 389 (2012)

Caracterización de la multiplicidad subyacente

L. Frankfurt, M. Strikman and C. Weiss, Phys. Rev. D. 83 (2011) 054012

- Multiplicidad \longrightarrow Parametro de impacto de la colision pp (ansatz).
- Modelos MC → PDFs
 Necesidad de GPDs ?
- Estudiar la correlación entre las observables de jets y la multiplicidad asociada multiplicity --> Diferente composición de jets de quark/gluon
 - Con actividad de jets
- Separar el evento en dos regiones
- Región complementaria sin fragmentos de jets

Multiplicidad subyacente

• Multiplicidad total en la TPC:

Todas las trazas con $|\,\eta\,| < 0.9$ y $\,150\,{\rm MeV}/c < p_{\rm T}^{\rm Track} < 900\,{\rm MeV}/c$

• Multiplicidad suave en la TPC: Subconjunto de la multiplicidad total en la TPC sin:

* Trazas alrededor de $R_{\rm E}$ del eje del jet. $|\eta_{\rm Jet}| < 0.5$

* Trazas alrededor de $\phi_{\rm E} = \phi_{\rm Jet} + \pi \pm R_{\rm E}$

Multiplicidad subyacente

Multiplicidad subyacente (MS)

La MS no conduce al resultado trivial debido a geometría

NT90, $\langle \delta R_c^2 \rangle$ y la multiplicidad subyacente

NT90 : Comparación de medidas experimentales y simulaciones

Las simulaciones describen un incremento en los valores medios de NT90 y $\langle \delta R_c^2 \rangle$ con la multiplicidad suave

Resumen de A2

- Estudié NT90 y $\langle \delta R_c^2 \rangle$ como función de la multiplicidad subyacente
- Los jets asociados con valores largos de la multiplicidad subyacente exhiben características de jets producidos por gluones
- Por el momento los modelos son capaces de reproducir las observaciones experimentales.

NT80 en colisiones Pb-Pb con $\sqrt{s_{\rm NN}}$ = 2.76 TeV

Substracción del fondo de la colisión para *NT80*

Comparación de la medición experimental con Hijing y con colisiones pp

• Hijing reproduce la observación experimental en el caso de colisiones periféricas

Modificación de la fragmentación del jet

 Dada la subestimación del fondo de la colisión Hijing, los valores experimentales son reproducidos experimentalmente

Modificación de la fragmentación del jet

• La comparación de colisiones centrales y periféricas muestan que las fragmentaciones son compatibles

Resumen de A3

- Estudié *NT80* en colisiones de Pb-Pb usando SISCone
- Desarrollé un método para estimar y substraer el fondo de la colisión de la observable
- Comparé la medición inclusiva de *NT80* con las predicciones de Hijing y de dos centralidades (periférica y central)
- La fragmentación de los jets es compatible con la fragmentación observada en el vacío

Conclusiones

<u>A1</u>

- Estudié *NT90* y $\langle \delta R_c^2 \rangle$: se encontró una mejor concordancia entre la medición experimental y los modelos cuando $p_{\rm T}^{\rm Track} > 1~{\rm GeV}/c$
- Desarrollé un método para estimar q/g (p_T^{Jet})

<u>A2</u>

- Los jets asociados a valores largos de la multiplicidad muestran una fragmentación similar a la de jets de gluones

<u>A3</u>

- Estudié *NT80* en colisiones Pb-Pb: la fragmentación de los jets es consistente con la fragmentación de jets en el vacío