Las búsquedas de Oscilaciones de Neutrinos de MiniBooNE

Alexis A. Aguilar-Arévalo (ICN-UNAM), (por la Colaboración MiniBooNE)

26 de mayo de 2011

Seminario del Cuerpo Académico de Particulas, Campos y Relatividad General

Facultad de Ciencias Físico-Matemáticas Benemérita Universidad Autónoma de Puebla

Resumen

Neutrinos y Oscilaciones de Neutrinos

Resultados experimentales – ¿tres Δm^2 's?

El experimento MiniBooNE

Resultados de oscilaciones de MiniBooNE (v y \overline{v})

Discusión de resultados, neutrinos estériles

Posibilidades a futuro

Conclusiones

Neutrinos en el modelo estándar

1897: *e* descubierto (tubo de rayos catódicos) 1900s: γ interpretado como partícula (otra vez) 1930s: µ descuierto (rayos cósmicos) 1950s: v_{a} observado (reactor nuclear) 1960s: 1[°] evidencia de quarks uy d observados (SLAC) s observado (BNL) v_{μ} observado (BNL) 1970s: nace el Modelo Estándar c descubierto (SLAC, BNL) τ observado (SLAC) b observado (FNAL) 1980s: W y Z observados (CERN) 1990s: t quark observado (FNAL) 2000s: v_{τ} observado (FNAL)

Neutrinos

Pauli postula su existencia para explicar el espectro de energía de los *e*'s en el decaimiento beta nuclear para mantener la conservación de la energía.

Enrico Fermi introduce su teoría del decaimiento beta en 1934

Oscilaciones de Neutrinos

$$\begin{pmatrix} v_{\mu} \\ v_{e} \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix}$$

$$\begin{pmatrix} v_{2} & v_{e} & v_{e} \\ \theta & v_{1} \\ \theta & v_{\mu} \end{pmatrix}$$

$$|v(t)\rangle = -\sin\theta |v_{1}\rangle e^{-iE_{1}t} + \cos\theta |v_{2}\rangle e^{-iE_{2}t}$$

$$\mathsf{P}_{\mathsf{osc}}(\mathsf{v}_{\mu} \rightarrow \mathsf{v}_{e}) = |\langle \mathsf{v}_{e} | \mathsf{v}(t) \rangle|^{2}$$

- Consideremos sólo dos tipos de neutrinos
- Si los estados de masa definida son distintos de los estados con sabor definido,

i.e.
$$(v_{\mu}, v_{e}) \neq (v_{1}, v_{2})$$

- Entonces los estados de sabor definido son mezclas de los estados de masa definida
- Probabilidad de hallar un $\nu_{\rm e}$ cuando se comienza con un $\nu_{\rm u}$

 $P_{osc}(v_{\mu} \rightarrow v_{e}) = \sin^{2}2\theta \sin^{2}(1.27\Delta m^{2}L/E)$

- 2 parámetros fundamentales: - Δm^2 (= $m_1^2 - m_2^2$) \leftrightarrow período
 - $-\theta \leftrightarrow \text{magnitud}$
- 2 parámetros experimentales
 - L = distancia recorrida
 - E = energía del neutrino

En un experimento:

- Ajustar L/E de acuerdo a Δm².
 Las incertidumbres determinan la sensibilidad en θ.
- Desaparición y aparición de neutrinos

A. Aguilar-Arévalo (ICN-UNAM)

 $P_{osc}(v_{\mu} \rightarrow v_{e}) = \sin^{2}2\theta \sin^{2}(1.27\Delta m^{2}L/E)$

- 2 parámetros fundamentales: - Δm^2 (= $m_1^2 - m_2^2$) \leftrightarrow período
 - $-\theta \leftrightarrow \text{magnitud}$
- 2 parámetros experimentales
 - L = distancia recorrida
 - E = energía del neutrino

En un experimento:

- Ajustar L/E de acuerdo a Δm².
 Las incertidumbres determinan la sensibilidad en θ.
- Desaparición y aparición de neutrinos

- 2 parámetros fundamentales: - Δm^2 (= $m_1^2 - m_2^2$) \leftrightarrow período
 - $-\theta \leftrightarrow \text{magnitud}$
- 2 parámetros experimentales
 - L = distancia recorrida
 - E = energía del neutrino

En un experimento:

- Ajustar L/E de acuerdo a Δm².
 Las incertidumbres determinan la sensibilidad en θ.
- Desaparición y <mark>aparición</mark> de neutrinos

Oscilaciones con 3 neutrinos

Matriz *Maki-Nakagawa-Sakata* (MNS – matriz de mezcla)

$$\begin{split} |\nu_{\alpha}\rangle &= \sum_{i} U_{\alpha i}^{*} |\nu_{i}\rangle \qquad |\nu_{\alpha}\rangle \text{ neutrino con sabor definido, } \alpha = \mathrm{e, \, \mu, \, \tau.} \\ |\nu_{i}\rangle &= \sum_{\alpha} U_{\alpha i} |\nu_{\alpha}\rangle \qquad |\nu_{i}\rangle \text{ neutrino con masa definida, } i = 1, 2, 3. \quad \Delta \mathrm{m}^{2}_{13} = \Delta \mathrm{m}^{2}_{12} + \Delta \mathrm{m}^{2}_{23} \end{split}$$

fase δ distinta de cero si la oscilación viola la simetría CP

fases α_1 y α_2 distintas de cero si los neutrinos son partículas de Majorana

$$\begin{split} U &= \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{bmatrix} \\ &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} e^{i\alpha_1/2} & 0 & 0 \\ 0 & e^{i\alpha_2/2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ &= \begin{bmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{bmatrix} \begin{bmatrix} e^{i\alpha_1/2} & 0 & 0 \\ 0 & e^{i\alpha_2/2} & 0 \\ 0 & 0 & 1 \end{bmatrix}, \end{split}$$

A. Aguilar-Arévalo (ICN-UNAM)

Seminario del Cuerpo Académico de PCyRG

FCFM BUAP

H. Puebla de Zaragoza, Puebla

26 de mayo de 2011

Solares+KamLAND

$|\Delta m_{12}^2| = (7.59 \pm 0.21) \times 10^{-5} e$ $\theta_{12} = 34.4 \pm 1.6^{\circ}$

En el Sol: a través del efecto MSW

S.P. Mikheyev, A.Y. Smirnov, Sov. J. Nucl. Phys. **42**, 913 (1985) L. Wolfenstein, PRD **17**, 2369 (1978)

11

Seminario del Cuerpo Académico de PCyRG

http://hitoshi.berkeley.edu/neutrino

Seminario del Cuerpo Académico de PCyRG

Implicación de señal "short baseline" (LSND)

En conflicto con resultados de neutrinos solares y atmosféricos si hay sólo 3 v's

3 neutrinos \Rightarrow 2 distintas Δm^2 's

Neutrinos "estériles" (cont.)

Oscilaciones con neutrinos estériles con violación de CP

3 activos + 2 estériles:

15

MiniBooNE motivation

- LSND experiment (Los Alamos)
- Excess of \overline{v}_e in a \overline{v}_{μ} beam: Excess= 87.9 ± 22.4 ± 6 (3.8 σ)
- Used stopped pion beam: $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$, $\mu^+ \rightarrow e^+ + \overline{\nu}_{\mu} + \nu_e$

 v_e signature: Cherenkov light from e^+ with delayed *n* capture (2.2 MeV γ)

• Interpreted as 2 v oscillations: $P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}) = \sin^{2}2\theta \sin^{2}(1.27 \Delta m^{2} L/E)$

 $= (0.245 \pm 0.067 \pm 0.045)\%$

A. Aguilar-Arévalo (ICN-UNAM)

Seminario del Cuerpo Académico de PCyRG

FCFM BUAP

H. Puebla de Zaragoza, Puebla

26 de mayo de 2011

MiniBooNE

A. A. Aguilar-Arevalo¹², C. E. Anderson¹⁵, S. J. Brice⁶, B. C. Brown⁶, L. Bugel¹¹, J. M. Conrad¹¹, Z. Djurcic²,
B. T. Fleming¹⁵, R. Ford⁶, F. G. Garcia⁶, G. T. Garvey⁹, J. Mirabal⁹, J. Grange⁷, J. A. Green^{8,9}, R. Imlay¹⁰, R. A. Johnson³, G. Karagiorgi¹¹, T. Katori^{8,11}, T. Kobilarcik⁶, S. K. Linden¹⁵, W. C. Louis⁹, K. B. M. Mahn⁵,
W. Marsh⁶, C. Mauger⁹, W. Metcalf¹⁰, G. B. Mills⁹, C. D. Moore⁶, J. Mousseau⁷, R. H. Nelson⁴, V. Nguyen¹¹,
P. Nienaber¹⁴, J. A. Nowak¹⁰, B. Osmanov⁷, Z. Pavlovic⁹, D. Perevalov¹, C. C. Polly⁶, H. Ray⁷, B. P. Roe¹³,
A. D. Russell⁶, M. H. Shaevitz⁵, M. Sorel^{5*}, J. Spitz¹⁵, I. Stancu¹, R. J. Stefanski⁶, R. Tayloe⁸, M. Tzanov⁴,
R. G. Van de Water⁹, M. O. Wascko^{10†}, D. H. White⁹, M. J. Wilking⁴, G. P. Zeller⁶, E. D. Zimmerman⁴ (The MiniBooNE Collaboration)

A. Aguilar-Arévalo (ICN-UNAM)

Seminario del Cuerpo Académico de PCyRG

Mini-Booster Neutrino Experiment

A. Aguilar-Arévalo (ICN-UNAM)

Seminario del Cuerpo Académico de PCyRG

FCFM BUAP

H. Puebla de Zaragoza, Puebla

26 de mayo de 2011

Mini-Booster Neutrino Experiment

Detector Cherenkov 800 ton aceite mineral

A. Aguilar-Arévalo (ICN-UNAM)

Seminario del Cuerpo Académico de PCyRG

FCFM BUAP

H. Puebla de Zaragoza, Puebla

26 de mayo de 2011

Mini-Booster Neutrino Experiment

 $P(\stackrel{(-)}{\nu_{\mu}} \rightarrow \stackrel{(-)}{\nu_{e}}) = \sin^{2}2\theta \sin^{2}(1.27 \Delta m^{2} L/E)$

<u>Modo de Neutrinos:</u> (cuerno con polaridad positiva) Búsqueda de $v_{\mu} \rightarrow v_{e}$ con 6.5E20 POT \rightarrow supone conservación de CP

<u>Modo de Antineutrinos:</u> (cuerno con polaridad negativa) Búsqueda de $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ con 5.66E20 POT **→ prueba directa de LSND**

A. Aguilar-Arévalo (ICN-UNAM)

Flujo de neutrinos

Interacciones de v y \overline{v}

Eventos en MiniBooNE

Identificación basada en *topología de eventos.* Usa principalmente luz Cherenkov, también luz de centelleo

23

Estabilidad de calibración

Muy estable, Ejemplo: Variación de energía media de e's Michel Inferior a 1% desde el 2002 (inicio del exp.)

Estabilidad del experimento

25

Estrategia de MiniBooNE

Estudiar la aparición de v_ ($\bar{\nu}_{e}$) en un haz de v_ ($\bar{\nu}_{\mu}$)

- Comenzar con un haz compuesto principalmente por $v_{\mu}(\bar{v}_{\mu})$.
- Medir los v_{e} (\overline{v}_{e}) presentes en el haz.
- Interpretar cualquier excess de v_e (\bar{v}_e) como oscilaciones $v_\mu \rightarrow v_e$ ($\bar{v}_\mu \rightarrow \bar{v}_e$).

MB: resultado con neutrinos

26 de mayo de 2011

MB: resultado con neutrinos

28

02

0.6

PRL 102, 101802 (2009)

04

08

1

1415

E^{QE} (GeV)

3

MB: 1er resultado con antineutrinos

Análisis de aparición de \overline{v}_e

Método de ajuste de Oscilaciones

Ajuste combinado a datos $v_e y v_{\mu}$

• Para cada "bin*" i*:

 $\Delta_i = N_i^{DATA} - N_i^{MC}$

• Barrido en Δm^2 y sin²20 para calcular -2ln(\mathcal{L}) sobre "bins" de ν_e y ν_μ

$$-2 \ln(\mathcal{L}) = \Delta M^{-1} \Delta^T + \ln(|M|)$$

- Matriz de errores M incluye errores sistemáticos para v_e y v_μ
- Muestra de v_{μ} grande constriñe muchas de las incertidumbres

los v_{μ} funcionan como detector cercano

Seminario del Cuerpo Académico de PCyRG

evts E, 0.8 Correlaciones entre bins de 0.6 E_v^{QE} , matriz Modelo Optico 0.4 0.2 ٧_e 0 -0.2 -0.4 / ₁₁ -0.6

Método de ajuste de Oscilaciones

Ajuste combinado a datos ν_e y ν_μ

• Para cada "bin*" i*:

 $\Delta_i = N_i^{DATA} - N_i^{MC}$

• Barrido en Δm^2 y sin²20 para calcular -2ln(\mathcal{L}) sobre "bins" de ν_e y ν_μ

$$-2 \ln(\mathcal{L}) = \Delta M^{-1} \Delta^T + \ln(|M|)$$

- Matriz de errores M incluye errores sistemáticos para v_e y v_μ
- Muestra de ν_{μ} grande constriñe muchas de las incertidumbres

los v_{μ} funcionan como detector cercano

Correlaciones entre bins de E_v^{QE} , matriz *Modelo Optico*

A. Aguilar-Arévalo (ICN-UNAM)

FCFM BUAP

0.8

0.6

Background *tipo-* \overline{v}_{e} esperado

Restringidos por mediciones externas y mediciones en MiniBooNE 33

A. Aguilar-Arévalo (ICN-UNAM)

Incertidumbres del background

	Neutrino (MeV)		Antineutrino (MeV)	
Fuente	200-475	475-1100	200-475	475-1100
Flujo por π⁺/μ⁺	0.4	0.9	1.8	2.2
Flujo por π⁻/μ⁻	3.0	2.3	0.1	0.2
Flujo por K⁺	2.2	4.7	1.4	5.7
Flujo por K⁻	0.5	1.2	-	-
Flujo por K ^o	1.7	5.4	0.5	1.5
Modelos del blanco y haz	1.7	3.0	1.3	2.5
secciones eficaces (v)	6.5	13.0	5.9	11.9
Producción de π ⁰ (NC)	1.5	1.3	1.4	1.9
Interacciones hadrónicas	0.4	0.2	0.8	0.3
Interacciones externas (tierra)	1.6	0.7	0.8	0.4
Modelo óptico	8.0	3.7	8.9	2.3
Electrónica & modelo de DAQ	7.0	2.0	5.0	1.7
TOTAL (no constreñido)	13.5	16.0	12.3	14.2
				34

A. Aguilar-Arévalo (ICN-UNAM)

FCFM BUAP

H. Puebla de Zaragoza, Puebla

(números son %)

26 de mayo de 2011

WS backgrounds

- Suponemos que solo los $\overline{\nu}_{\mu}$ oscilan (*signo correcto*)
- Necesario conocer fracción de eventos con signo incorrecto (WS).
- Dos métodos de constricción:
 - a) medida de distribución angular de muones CCQE
 - b) medida de evetnos $CC\pi^+$ (indep. de modelaje de efectos nucleares)
- Resultado: predicción de BG de WS reducida en un ~30%

Sensibilidad (5.66×10²⁰ POT)

A. Aguilar-Arévalo (ICN-UNAM)
Recientes resultados con antineutrinos

FCFM BUAP

Datos recientes de anti-neutrinos

Phys. Rev. Lett. 105, 181801 (2010)

Usando 5.661e20 POT

Datos recientes de anti-neutrinos

Usando 5.661e20 POT Phys. Rev. Lett. 105, 181801 (2010)

Algunos números:

	200-475 MeV	475-1250 MeV	1250-3000 MeV
Datos	119	120	38
MC	100.48 ± 14.33	99.08 ± 13.98	34.2 ± 5.8
Exceso	18.52 ± 14.33	20.92 ± 13.98	3.8 ± 5.8
LSND Best Fit	7.6	22	3.5
v exceso Baja-E	11.6	0	~0
LSND+Low E	19.2	22	3.5

Supone que el exceso de v_e está presente en los v_{μ} "WS" del haz A. Aguilar-Arévalo (ICN-UNAM) Seminario del Cuerpo Académico de PCyRG FCFM BUAP H. Puebla de Zaragoza, Puebla 39

Probabilidad de resultado Nulo

- Probabilidad de χ^2 para punto <u>nulo</u> (sólo bkgd) mod. indep.
- Método frecuentista

475-1250 MeV	chi2/NDF	probabilidad
$\nu_{\mu} \rightarrow \nu_{e}$	6.1/6	40%
$\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$	18.5/6	0.5%

Fit E>475 MeV

- 5.661E20 POT
- E>475, región de señal para osc. tipo LSND.
- Oscilaciones favorecidas sobre hipótesis de sólo bkgd. al 99.4% C.L. (dep. del modelo)
- Mejor ajuste $(\sin^2 2\theta, \Delta m^2) = (0.9584, 0.064 \text{ eV}^2) \chi^2/\text{NDF} = 8/4$, Prob=8.7%
- Datos consistentes con señal de LSND

Fit E>475 MeV

- 5.661E20 POT
- E>475, región de señal para osc. tipo LSND.
- Oscilaciones favorecidas sobre hipótesis de • sólo bkgd. al 99.4% C.L. (dep. del modelo)
- Mejor ajuste $(\sin^2 2\theta, \Delta m^2) = (0.9584, 0.064 \text{ eV}^2)$ • χ^2 /NDF = 8/4, Prob=8.7%

0.4

• LSND

 \blacktriangle MB v mode

0.6

0.020

0.015

0.010

0.005

0.000

-0.005L....

 $P\Big(\overline{V}_\mu o \overline{V}_e \Big)$

1.0

FCFM BUAP

0.8

H. Puebla de Zaragoza, Puebla

Oscilaciones con neutrinos estériles

Suponiendo un modelo (3+1) con neutrinos estériles ligeros:

Todos los resultados experimentales con antineutrinos, incluyendo aparición y desaparición, son compatibles al 20%.

G.Karagiorgi et al., Phys. Rev. D80, 073001 (2009), actualizado incluye recientes datos de antineutrinos de MiniBooNE.

A. Aguilar-Arévalo (ICN-UNAM)

FCFM BUAP

43

 $sin^2 2\theta_{uu}$

0.37

MB: desaparición de v_{μ} y \overline{v}_{μ}

PRL 103:061802 (2009)

- MiniBooNE ha hecho búsquedas de desaparición de $\,\nu_{\mu}\,\,y\,\,\overline{\nu}_{\mu}$
- Explora nuevas regiones en el espacio de párametros
- Límites mejorados desaparición de v_μ de análisis conjunto MiniBooNE/SciBooNE (por ser publicados)

Ajuste global 3+1 (antineutrinos)

Oscilaciones con neutrinos estériles (II)

Suponiendo un modelo (3+1) con un neutrino estéril:

Combinando todos los resultados de exp. short-baseline de neutrinos y antineutrinos y resultados de neutrinos atmosféricos →

G.Karagiorgi et al., Phys. Rev. D80, 073001 (2009) A. Aguilar-Arévalo (ICN-UNAM) Seminario del Cuerpo Académico de PCyRG FCFM BUAP

H. Puebla de Zaragoza, Puebla

Oscilaciones con neutrinos estériles (III)

Diferencia entre observación con v y \overline{v} en MiniBooNE puede explicarse en un esquema 3+2 con violación de CP.

J.Kopp et al. ArXiv:1103.4570 (2011)

- LSND, MB, KARMEN, NOMAD)
— global SBL (incl. desaparición)

Anomalía de reactores nucleares

- Reciente reevaluación del flujo de \overline{v}_{e} en reactores (T.A. Mueller, arXiv:1101.2663)
- Nueva predicción es ~3% mayor a la anterior.
- Si se confirma \Rightarrow experimentos de oscilaciones con reactores consistentes con déficit de $\overline{v_e}$ en distancias cortas (10-100 m)

47

Posibilidades a Futuro

FCFM BUAP

Mejoras en Sensibilidad

LSND $\overline{\nu}$ =3.8 σ , MB $\overline{\nu}$ =2.7 σ

- Resultado de MB en v está limitado por la estadística: <u>necesita más datos!</u>
- Aprobado por FNAL para continuar. Nuestra meta es 15e20 POT
- Con 15e20 POT significancia puede crecer a 3.4σ ... o caer a ~95% C.L.
- Análisis combinado de v_e and \overline{v}_e para incrementar sensibilidad, en proceso.

Experimentos en el futuro

- Más datos de \overline{v} en MiniBooNE (esp. 15×10²⁰ POT)
- MicroBooNE: (100 ton LArTPC)
 - Aprobación CD1 en FNAL
 - Explorará el exceso a bajas energías
- Algunas otras ideas en consideración:

- Mover o construir réplica de MiniBooNE a 200m (LOI arXiv:0910.2698) → BooNE
- Fuente de piones en reposo en ORNL (OscSNS, arXiv:0810.3175v1) o en "project X"
- Nueva búsqueda de oscilaciones de neutrinos anómalas en el CERN-PS (arxiv:0909.0355v3)

Conclusiones

Qué dice MiniBooNE?

• No exceso de v_e en haz de v_μ arriba de 475 MeV.

→ excluye señal CP-invariante de LSND, *i.e.* $P(v_{\mu} \rightarrow v_{e}) = P(\bar{v}_{\mu} \rightarrow \bar{v}_{e})$

- Exceso de 3σ de $v_{\rm e}$ en haz de v_{μ} debajo de 475 MeV.

 \rightarrow No ajusta bien hipótesis de mezcla de sólo 2v. Origen desconocido.

- No exceso de $\overline{\nu}_{\rm e}$ en haz de $\overline{\nu}_{\mu}$ debajo de 475 MeV.

 \rightarrow Excluye algunas explicaciones del exceso de baja E en modo de v

- Exceso de v
 _e en haz v
 _µ arriba de 475 MeV.
 → Ajuste de 2v prefiere señal tipo-LSND al 99.4% C.L.
- Violación de CP con modelos 3+2 es una posibilidad, aunque hay tensión con datos de desaparición.
- Experimentos futuros (BooNE @ FNAL, ICARUS @ CERN, OscSNS @ ORNL) podrían verificar que los v's estériles existen.

FCFM BUAP

ν

Nota final

- MiniBooNE ha producido numerosos resultados sobre secciones eficaces de inrecacciones de neutrinos (8 artículos en total)
 - "Measurement of Neutrino-Induced CC π^+ Production Cross Sections", PRD 83 052007 (2011)
- "Measurement of v_{μ} -induced CC π^0 production cross sections on mineral oil at $E_v \in 0.5$ -2 GeV", PRD 83 052009 (2011)
- "Measurement of the neutrino NC-Elastic differential cross section", PRD 82, 092005 (2010)
- "First Measurement of the ν_{μ} CCQE double differential cross section", PRD **81**, 092005 (2010)
- "Measurement of v_{μ} and \overline{v}_{μ} induced NC π^0 production cross sections in mineral oil at E_v O(1GeV)", PRD **81**, 013005 (2010)
- "Measurement of the $v_{\mu}CC\pi^+$ to quasi-elastic cross section ratio in mineral oil in a 0.8 GeV v beam", PRL 103, 081801 (2009)
- "First observation of coherent π^0 production in v-Nucleus interactions with E_v<2GeV", PL **B664**, 41 (2008)
- "Measurement of v_{μ} Quasi-Elastic Scattering on Carbon", PRL 100, 032301 (2008)
- Muchos de éstos medidos por primera vez
- Beneficiará el programa de oscilaciones de neutrinos en general.

Gracias por su atención

FCFM BUAP

Backup

Oscilaciones con 3 neutrinos (II)

Jerarquía de masas: $|\Delta m_{12}^2| << |\Delta m_{23}^2|$ - desacople de efectos

neutrinos de aceleradores y atmosféricos: Super-K, K2K, MINOS, OPERA $P(v_{\mu} \rightarrow v_{\tau}) \approx \cos^4 \theta_{13} \sin^2 \theta_{23} \sin^2 (1.27 \Delta m_{23}^2 L/E)$ $P(v_{\mu} \rightarrow v_{e}) \approx \frac{\sin^{2} 2\theta_{13}}{\sin^{2} \theta_{23}} \sin^{2} (1.27 \Delta m_{23}^{2} L/E)$ $P(v_{e} \rightarrow v_{\tau}) \approx \frac{\sin^{2} 2\theta_{13}}{\cos^{2} \theta_{23}} \sin^{2} (1.27 \Delta m_{23}^{2} L/E)$ \blacktriangleright No observados aún $\partial_{13} = 0?$ neutrinos de reactores nucleares: $P(\overline{v_e} \rightarrow \overline{v_e}) \approx 1 - P1 - P2$, Kam-LAND $P1 = \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 (1.27 \Delta m_{12}^2 L/E)$ $P2 = \sin^2 2\theta_{13} \sin^2 (1.27 \Delta m_{23}^2 L/E)$ ►¿Double-Chooz, **RENO**, Daya-Bay? **E**., (MeV)

Neutrinos "estériles" (cont.)

En modelos 3+1, búsquedas de aparición y desaparición a distancias cortas (<1 km) relacionadas por los mismos parámetros

Por ejemplo:

<u>Aparición de v_{e} </u>:

 $P^{SBL}(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}) = 4|U_{e4}|^{2}|U_{\mu4}|^{2}\sin^{2}(1.27 \Delta m_{41}^{2} \text{ L/E})$

<u>Desaparición de $\overline{v_{\mu}}$ </u>:

 $P^{SBL} (\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\mu}) = 1 - 4 |U_{\mu4}| (1 - |U_{\mu4}|^2) \sin^2(1.27 \,\Delta m_{41}^2 \,\text{L/E})$

<u>Desaparición de ve</u>: en reactores nucleares $P^{SBL}(\overline{v}_e \rightarrow \overline{v}_e) = 1 - 4|U_{e4}|^2(1-|U_{e4}|^2)\sin^2(1.27 \Delta m_{41}^2 L/E)$

$$P\left(\overline{\mathbf{v}}_{\alpha} \rightarrow \overline{\mathbf{v}}_{\beta}\right) = P\left(\mathbf{v}_{\alpha} \rightarrow \mathbf{v}_{\beta}\right)$$
⁵⁶

LSND v_e Background Estimates

Estimate	$\overline{\nu}$ e / $\overline{\nu}_{\mu}$	\overline{v}_{e} Bkgd	LSND Excess
LSND Paper	0.086%	19.5+-3.9	87.9+-22.4+-6.0
Zhemchugov Poster1	0.071%	16.1+-3.2	91.3+-22.4+-5.6
Zhemchugov Poster2	0.092%	20.9+-4.2	86.5+-22.4+-6.2
Zhemchugov Seminar	0.119%	27.0+-5.4	80.4+-22.4+-7.1

All \overline{v}_e bkg estimates assume a 20% error. Note that the $\overline{v}_e / \overline{v}_{\mu}$ ratio determines the ve background!

LSND Paper: A. Aguilar *et al.*, Phys. Rev. D 64, 112007 (2001); (uses **MCNP**) Zhemchugov Poster 1: FLUKA \overline{v}_{e} / \overline{v}_{μ} ratio presented at the ICHEP 2010 Conference, Paris Zhemchugov Poster2: GEANT4 \overline{v}_{e} / \overline{v}_{μ} ratio presented at the ICHEP 2010 Conference, Paris Zhemchugov Seminar: FLUKA $\overline{v}_{e} / \overline{v}_{\mu}$ ratio presented at CERN on September 14, 2010

Although the analysis of Zhemchugov et al. is not fully understood or endorsed, their \overline{v}_{e} / \overline{v}_{μ} ratios agree reasonably well with the published LSND results.

Note that LSND measures the correct rate of $v_{\mu}p \rightarrow \mu^+n$ interactions, which confirms the π^- production and background estimates. Note also, that FLUKA & GEANT4 are not as reliable as MCNP at 800 MeV! 57

Anomalía de reactores nucleares

- Reciente reevaluación del flujo de \overline{v}_{e} en reactores (T.A. Mueller, arXiv: 1101.2663)
- Nueva predicción es ~3% mayor a la anterior.
- Si se confirma \Rightarrow experimentos de oscilaciones con reactores consistentes con déficit de $\overline{v_e}$ en distancias cortas (10-100 m)

Reminders of some preunblinding choices

1250

Why is the 300-475 MeV region unimportant?

Large backgrounds from mis-ids reduce S/B Many systematics grow at lower energies Most importantly, not a region of L/E where LSND observed a significant signal!

333

475

Energy in MB (MeV)

Neutrinos "estériles" (cont.)

Oscilaciones con neutrinos estériles con violación de CP

3 activos + 2 estériles:

Phys. Rev. D 75, 013011 (2007)

Diferencia entre probabilidades de aparición entre v y \overline{v} . Proveniente de término de interferencia con fase ϕ_{45} .

$$\begin{array}{l} \underline{\text{modelo } 3+2}:\\ P(\overleftarrow{v_{\mu}} \rightarrow \overleftarrow{v_{e}}) = \\ 4 |U_{e4}|^{2} |U_{\mu4}|^{2} \sin^{2}(1.27 \ \Delta m_{41}^{2} \ \text{L/E}) \\ + 4 |U_{e5}|^{2} |U_{\mu5}|^{2} \sin^{2}(1.27 \ \Delta m_{51}^{2} \ \text{L/E}) \\ + 4 |U_{e4}| |U_{\mu4}| |U_{e5}| |U_{\mu5}| \\ \sin(1.27 \ \Delta m_{41}^{2} \ \text{L/E} \ \sin(1.27 \ \Delta m_{51}^{2} \ \text{L/E}) \\ \cos(1.27 \ \Delta m_{54}^{2} \ \text{L/E} \pm \phi_{45}) \end{array}$$

Fit E>200 MeV

- Restar exceso debido a neutrinos in modo de antineutrinos (11.6 events)
- Best fit $(\sin^2 2\theta, \Delta m^2) = (0.0061, 4.42 \text{ eV}^2)$
- Datos consistentes con señal de LSND

25 m Absorber

Two periods running (in \overline{v} mode) with 1 & 2 absorber plates

- 1 absorber plate: 0.569E20 POT
- 2 absorber plates: 0.612E20 POT

Good data/MC agreement in high statsitics samples

(numu CCQE, NC pi0, ...)

Data included in latest (2010) analysis

Detector calibration

BooNE

Present neutrino low energy excess is 6 sigma statistical; 3σ when systematics are included

Gain statistics quickly, already have far detector data

BooNE

Look for CPT violation ($v_{\mu} \rightarrow v_{\mu} \neq \overline{v}_{\mu} \rightarrow \overline{v}_{\mu}$)

6.5e20 Far/1e20 Near POT 1e21 Far/1e20 Near POT

Fit method example

Improves sensitivity by

Strong correlations between $\bar{\nu}_{e}$ signal, background, and $\bar{\nu}_{u}$ CCQE samples

Desaparición de v_{μ} y $\overline{v_{\mu}}$ en MINOS

Hint de diferencia entre oscilaciones de neutrinos y antineutrinos en el experimento long-baseline (735 km) MINOS

Datos recientes de anti-neutrinos

	200-475 MeV	475-1250 MeV	1250-3000 MeV
Datos	119	120	38
MC	100.48 ± 14.33	99.08 ± 13.98	34.2 ± 5.8
Exceso	18.52 ± 14.33	20.92 ± 13.98	3.8 ± 5.8
LSND Best Fit	7.6	22	3.5
v exceso Baja-E	11.6	0	~0
LSND+Low E	19.2	22	3.5

Supone que el exceso de v_e está presente en los v_μ "WS" del haz

\overline{v}_e background prediction

$\overline{\nu}_{e}$ background prediction

\overline{v}_e background prediction

\overline{v}_{e} background prediction

