Development of the GEM-based Read-Out Chambers for the ALICE TPC

Piotr Gasik (TU München, Excellence Cluster 'Universe')

Puebla 13.11.2013

A Large Ion Collider Experiment at CERN

 Investigation of the Pb-Pb collisions at a center-of-mass energy of 5.5 TeV per nucleon pair

• Study of the p-p collisions both as a comparison with Pb-Pb collisions and in physics areas where Alice is competitive with other LHC experiments.

 Study the physics of strongly interacting matter at extreme energy densities (QGP)

• Comprehensive study of the hadrons, electrons, muons and photons produced in the collisions

ALICE TPC upgrade

ALICE detector

SIZE: 16 x 16 x 26 m

TPC (Time Projection Chamber) – main device in the ALICE "central barrel" for tracking and PID

TPC principles

Perfect for HI Collisions:

- almost whole volume is acti
- minimal radiation length (FC, gas)
- easy pattern recognition (continuous tracks)
- PID information from ionizat measurements

- Two coordinat(ex, y) given by the projection on the pad plane
- Third coordina(tze) given by drift time and drift velocity, ($z = t_i y_{ft}$)

ALICE TPC

MWPC readout

- Multi Wire Proportional Chamber with pad readout
- 3 wire planes: gating, cathode, anode

- Gating-wire grid prevents back drifting ions from the amplification stage to distort the drift field (IBF suppression ~ 10⁻⁵)
- Nominal gain: 7 8 k
- Gating \rightarrow low trigger rates:
 - 300 Hz for Pb-Pb
 - 1.4 kHz for p-p

"The proposed upgrade of ALICE would force at 50k Huzhich necessitates maajor upgrade of the, ThRa@nely the replacement of the existing readout cham builts <u>Gas Electron Multiplier (Gaterve)</u> ctors Furthermore, all central detectors will require an (electronics) upgr switching to fally pipelinere ad"

Minutes of the 109th LHC Committee meeting, 22.03.2012

* LS2 – 2nd Long Shutdown of the LHC (2017-2018), when the LHC will be upgraded to the highest luminosities.

Gas Electron Multiplier F. Sauli, NIM A 386 (1997) 531

Mag = 248 X

Tilt Corrn. = Off = 36.0 °

Time :15:52:53

WD = 5.1 mm

- Thin polyimide foil (Kapton[®])
 ~ 50 μm
- Cu-clad on both sides
 ~ 5 μm
- Photolithography:
 ~ 10⁴ holes/cm²
- <u>"Standard" GEM foil:</u>
 - Inner/Outer hole diameter
 50/70 μm
 - Pitch

140 µm

GEM principles

GARFIELD/MAGBOLTZ simulation: 2 e⁻ entering the GEM hole

- E_{hole} up to 100 kV/cm with ΔV_{GEM} = 500 V (hole-size dependency)
- $E_{hole} >> E_{above} \rightarrow most of the ions are collected on the top side of GEM$
- $E_{below} > E_{above} \rightarrow$ electron extraction is improved

Introduction summary

• ALICE TPC will operate at a factor 100 higher readout rate after LS2

- 2 MHz in p-p and 50 kHz in Pb-Pb collisions
- no gating and continuous readout

GEMs as an alternative for MWPC readout

- no issue with rate capability
- possibility to efficiently block ions
- lower (effective) since signal is produced by electrons (fast) + lower noise
- Issues for GEM upgrade
 - dE/dx resolution for PID (Nov./Dec. 2012)
 - stability under LHC conditions (Jan./Feb. 2013)
 - gain stability (charging up, rate dependence)
 - **IBF** (ongoing measurements, simulations)
 - new electronics (polarity, continuous readout)

GEM – IROC prototype @ TUM

Quality Assurance

MICROSCOPE CHECK

- hole size measurement
- search for defects

HV TESTS

- tests in box flushed with N₂
- 550V (max. 600V) applied
- leakage current measured

Gluing procedure

1. Stretching (DEK frame, 10 N/cm)

4. Foil glued onto the frame

2. Glue dispensing (ARALDIT 2011)

5. Counterweight for gluing

3. Alignment tool

6. Curing the glue (70° C for 20h)

Framed GEM foil

- raw material is cut off
- HV tests \rightarrow foils are more stable after gluing/heating procedure
- loading resistors (SMD) are soldered
- flaps used for HV connection (with Kapton wires) after mounting GEMs on the Alubody

HV supply

- Loading resistors
 - 10 MΩ for top (G1) and middle (G2) foils
 - 1 MΩ for bottom (G3) foil
- Each side powered independently (6 HV channels)
 - ΔV across the GEM must not increase after the trip
 - top side must discharge faster than bottom
 - crucial role of parasitic capacitances (cables!)

Grounding resistors

- **G1T** \rightarrow 5 MΩ; **G1B** \rightarrow 10 MΩ
- **G2T** \rightarrow 5 MΩ; **G2B** \rightarrow 10 MΩ
- G3T \rightarrow 3.3 M Ω ; G3B \rightarrow 3.3 M Ω
- Tested with GEM-model and simulations

DRIFT FIELD (400 V/cm)

HV settings for a gain of 2000 in Ne-CO₂ (90-10)

		Standard	IBF	
 "Standard" settings stability-optimized decreasing gain in GEMs moderate transfer fields 	Drift Field ΔU_{GEM1} Transfer Field 1 ΔU_{GEM2} Transfer Field 2 ΔU_{GEM3} Induction Field	0.4 kV/cm 276 V 2.57 kV/cm 252 V 2.57 kV/cm 221 V 2.57 kV/cm	0.4 kV/cm 225 V 3.8 kV/cm 235 V 0.60 kV/cm 285 V 3.8 kV/cm	 "IBF" settings - IBF optimized (4 %) - increasing gain in GEMs - high filed assymmetry (low TRANSFER2 field)

Excellence Cluster

٦Ш

LMU

Commissioning in the lab

IROC in the testbox with Field Cage

- Drift field: 400 V/cm
- Drift length: \approx 11.5 cm
- Readout: ca. 250 pads (out of 5500) connected to the preamplifier (\sim 75 cm²)

First ⁵⁵Fe spectra

Preparation to the test beam

Readout

ALICE

0 10 Front-End Cards (borrowed from the LCTPC Collaboration via Lund):

- 16 to 18 pads (size $4 \times 7.5 \text{ mm}^2$, 320 cm² in total) on 64 pad rows 0
- region covered \sim 6 cm wide
- average noise (ENC) at the level of $500 600 e^-$

EUDET Front-End Card:

- programmable charge preamplifier: PCA16 0
- digitization and signal processing: ALTRO 0
- 0 same backplane and readout as in ALICE

PS test beam

- Average beam rate: 2000 particles/spill (0.5 s)
- DAQ rate: 500 events/spill
- Data taken for different beam settings:
 - 1 GeV/c, 2 GeV/c, 3 GeV/c negative (e^- , π^-)
 - 1 GeV/c, 6 GeV/c positive (e^+ , π^+ , p)
 - "high-rate" run, 1 GeV/c negative, 5000 particles/spill
 - shaping time analysis \rightarrow different settings for moderate gains (1 2 k)
- Data taken for different GEM settings: "Standard" and "IBF"
- Gas mixture: Ne/CO₂ (90/10)

PS test beam

Pb-glass signal vs. cherenkov signal

Beam tracks

 Separation between pions and electrons (Pb-glass vs. Cherenkov)

dE/dx measurements

dE/dx measurements

- Gain equalization using tracks
- No T/P correction
- Truncated mean of cluster charge (5 70 %)
- For comparison: IROC only in ALICE TPC $\sigma_{e}/E \approx 9.5$ % (high η)

Test under LHC conditions

- p-Pb period 2013 (3 weeks)
- Prototype installed at the ALCIE cavern under the beam pipe ($\eta \approx 2.6$)
- 200 kHz interaction rate
- Particle rate ~5000 kHz per rapidity unit
- Standalone readout: waveforms, discharges, trips
 - Trig. Rate < 10 Hz (recording highest signals)

LHC beamtime

Example of amplitude spectrum

23 HV trips occurred (+ 8 during the PS beamtime)

- 20 at lowest "IBF" settings, 2 at "standard", 1 while ramping up
- 21 with beam, 2 without
- All including G1 (absolute voltages?)
- Highly ionizing particles? (heavy fragments)

- 7 "shorts" developed in the GEM-foils
 - 1 x GEM1; 3 x GEM2; 3 x GEM3;
 - Shorts developed in the sectors with problems at the QA – HV step;
 - No correlations with foil defects found

Importance of QA

- First GEM IROC prototype for ALICE designed, assembled and operat
- Good Œ/dx resolution has been demonstrated with beams at the CERN
- Stability under LHC conditions tested during p-Pb beamtime

- Issues to be addressed:
 - Stability of the GEM syste(mTUM, CERN)
 - discharge probability
 - discharge propagation (FEE protection)
 - IBF –optimization in progres(SUM, CERN, Frankfurt)
 - HV supply
- Definition of assembly procedure for IROCs and OROCs under way

IB for triple GEM

<u>Number of ions drifting back from the amplification stage to the active volume of the detector</u> <u>should be minimized in order to avoid major distortions of the drift field</u>

Ion Backflow (IB) =

Number of **ions** arriving at the cathode Number of **electrons** arriving at the anode

 $\varepsilon = IB \times GAIN - 1$

- IB = 0.5 – 1.0 % (GAIN=1k) - IB = 0.25 – 0.5 % (GAIN=2k)

	IBF over T2 and T3 for Ne-CO ₂ -N ₂ (90-10-5)												
V/cm]	1	1 .00	1.35	1.71	1.98	2.29	2.57	2.86	3.13	3.33	3.58		4
щ Ц	0.9	1.03	1.39	1.68	1.97	2.26	2.61	2.80	3.07	3.32	3.54	-	3.5
	0.8	1.03	.35	1.68	1.99	2.31	2.55	2.82	3.06	3.28	3.45	_	3
	0.7	1.05	1.39	1.70	2.01	2.27	2.51	2.73	2.98	3.16	3.33		
	0.6	1.04	1.37	1.69	1.95	2.22	2.46	2.70	2.89	3.03	3.20		2.5
	0.5	1.07	1.39	1.67	1.93	2.16	2.38	2.55	2.69	2.84	2.94	_	2
	0.4	1.05	1.38	1.63	1.87	2.10	2.25	2.39	2.48	2.61	2.70		
	0.3	1.05	1.33	1.59	1.75	1.92	2.05	2.16	2.27	2.36	2.42		1.5
	0.2	0.99	1.28	1.43	1.60	1.74	1.83	1.94	1.99	2.05	2.11	_	1
	0.1	1.06	1.22	1.35	1.40	1.54	1.63	1.68	1.71	1.77	1.87		
		0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9 E _{T2}	1 (kV/cm)		0.5

Figure 5.5: Two-dimensional scan of the Ion backflow in a quadruple stack of standard GEMs (S-S-S-S) as a function of E_{T2} and E_{T3} . E_{T1} and E_{Ind} are both 4 kV/cm, and the voltages across the GEMs are in increasing sequence to achieve an effective gain of 2000.

Picture from the TDR

Standard vs. Large Pitch GEMs 140 um vs. 280 um

"Better" holes misalignment can be achieved in combination of standard (S) and Large Pitch (LP) GEMs

Best IB up to date (S-LP-LP-S)

IB ~ 0.3%

Pictures from the TDR,

Still, optimization (improvement) in energy resolution AND stability needed

Further IB minimization?

• COBRA

A. Lyashenko et al., NIM A 598 (2009) 116

"Flower" THGEM

MICROMEGAS

 DIFFERENT GEOMETRIES

Discharge probability studies at TUM

10x10 cm² Modular detector

Alpha source – gas mantle enriched in Thorium

- RATE 1.8 Hz
- Measurement at G ≈ 1.2×10⁵ (108%)
 - Discharge probability: (1.0±0.1)×10⁻³
- Measurement at G ≈ 7.5×10⁴ (107%)
 - Discharge probability: (3±2)×10⁻⁵
- Measurement at G ≈ 5×10⁴ (105%)
 - Discharge probability < 2.5×10⁻⁶

COMPARISON TO THE PUBLISHED DATA:

S. Bachmann et al., NIM A 479 (2002) 294

Fig. 8. Discharge probability as a function of total effective gain for single, double and triple GEM detectors.

- In progress
 - Ne-CQ, Ne-CQ N_2
 - 3- and 4-GEM stack
 - IBF vs standard settings
 - Many other parameters

TDR – baseline solutions

CERN-LHCC-2013-02 XXXX November 10, 2013 XXXX

- Baseline solution, presented in the T HLICE ALLCE TORAGE •
 - 4 GEM (stability + IB)
 - **Ne-CQ-N₂ (90-10-5()**stability + IB)

Technical Design Report of the ALICE TPC Upgrade

The ALICE Collaboration

Version: TPC-TDR-1

Copyright CERN, for the benefit of the ALICE Collaboration. This article is distributed under the terms of Creative Commence Attribution License (CC-BY-3.0), which permits any use provided the original author(s) and source are credited.

Coming soon: GEM-OROC

870,48 mm

- 4 times larger than IROC!!!
- 3 independent foils (frames) per amplification stage

GRACIAS!

- Designed to cope with rapidity densities approaching $dN_{ch}/dy = 8000$ at $\sqrt{s} = 5.5$ TeV
- Including secondaries, this amounts to 20000 tracks in one interaction in the TPC acceptance

- <u>Definitions</u>
 - Effective gain

$$G_{\rm eff} = rac{I_{\rm anode}}{eN_{\rm ion}R}$$

- Ion Backflow $IB = \frac{I_{\text{cathode}}}{I_{\text{anode}}} = \frac{1+\varepsilon}{G_{\text{eff}}}$
- Epsilon number of ions drifting back into the drift region from the amplification stage per incoming electron
- Expectations (LoI): 0.25% at the gain of 2000

ПΠ

IB measurements

Ampere-meters

Figure 3.5: High-voltage (HV) current meter with wireless readout (open lid). (1) HV in; (2) HV out; (3) non-inverting operational amplifier (AD549L); (4) 16-bit ADC (AD7790); (5) microcontroller (MSP430); (6) XBee[®] wireless transceiver; (7) reed switch. [Hö12]

Figure 3.6: Principle of current measurement with the new ammeters.

New batch (after some improvements) in preparation at TUM/E18

Stability and long-term operation

- **HV** Supply \rightarrow safe trip after the discharge
 - Independent HV channels
 - **Resistor chain**
 - Active HV divider
 - + fast shutdown

SRS AVD H. Muller, RD51 Miniweek, 23.04.2013

ALICE TPC UPGRADE

-225 V GEM1 -760 V

-235 V GEM2 -40 V

-285 V GEM3 -1520 V