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Introduction
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Graphene

Emerson Sadurńı (IFUAP) Propagators on lattices August, 2012 4 / 42



Comparison

Relativistic Quantum Mechanics

σ: ∗-spin, big and small components of spinors.

c : Speed of light.

mc2: Rest mass of the particle.

Hexagonal and dimeric lattices

σ: spin ± for sublattices A and B.

∆ ∼ c : Hopping energy or Fermi velocity (nearest neighbors).

E2 − E1 ∼ mc2: Spectral gap (semiconductors).
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Graphene
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Microwave resonators
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Linear chains (polymers)

1 + 1 Dirac equation.

1 + 1 Dirac oscillator.

Spin-orbit terms (gyroscope).
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Spectrum

Expansion around k = π/2

Ek = E0 ±
√

∆2 cos2 k + (δE )2 (1)

E rel
k = ±

√
c2p2 +m2c4 (2)
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Discrete propagators in 1d
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Space discretization

Introducing the constants ∆ (with units of energy × length2) and a (lattice
spacing), the Schrödinger dynamical problem is described by the equation

− ∆

2a2
[ϕn+1(τ)− 2ϕn(τ) + ϕn−1(τ)] = i~

∂ϕn(τ)

∂τ
(3)

or, more concisely

−1

2
[ψn+1(t) + ψn−1(t)] = i

∂ψn(t)

∂t
, (4)
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Spectral decomposition

Tight-binding homogeneous models are solved by Bloch waves, therefore

K (n,m; t) =

∫ 2π

0
dk e i(n−m)ke it cos k (5)

It is also possible to describe the system with canonical variables

P =
sin(ap)

a
, X =

1

2
{sec(ap), x} (6)
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Properties

Bessel representation

K (n,m; t) = θ(t)in−mJn−m(t), (7)

Green’s function

1

2
[K (n + 1,m; t) + K (n − 1,m; t)]− i

∂K (n,m; t)

∂t
= −iδ(t)δn,m. (8)

Continuous limit n − n′ = a(x − x ′)

K (n, n′; t) →
[
ae it
]
×
√

m

2πi~τ
exp

(
i
m(x − x ′)2

2~τ

)
(9)
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Diffractive effects
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Moshinsky shutter in discrete space = Diffraction in periodic media
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Moshinsky shutter in discrete space = Diffraction in periodic media
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Limits
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Relevant limits

In general lattices (1 or 2d) we find the following cases

0. Continuous non-relativistic kernel (square lattice and linear chain).
In this regime a → 0.

1. Gapless limit µ→ 0 (Graphene vs Boron Nitride)

2. Strong gap limit µ→ ∞ (time rescaling).

3. Klein-Gordon propagator (triangular lattice) ∆ → ∞, x , t near
light cones.

4. Dirac propagator (hexagonal lattice) ∆ → ∞, x , t near light cones.
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Feynman paths
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Action and weights

K (n,m; t) =
∑
Paths

w(t)F [{ν}] exp
(
i
π

2
SN+1,0

)
(10)

SN+1,0 =
N∑
j=0

|νj+1 − νj | (11)

W =

(
t

2(N + 1)

)SN+1,0

×
N∏
j=0

1

(Sj+1,j)!
≡ w(t)× F [{ν}]. (12)
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Many bodies
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Field quantization

For any type of lattice described by n,m, we have
Bosons: [

an(t), a
†
m(t

′)
]
= K (n,m; t − t ′) (13)

Fermions:

{fn(t), f †m(t ′)} = K (n,m; t − t ′) (14)

with the possibility of finding the evolution of Fock states in closed form

⟨N(n, t = 0)|N(m, t = t ′)⟩ = Products of K′s (15)
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Summary of propagators
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1d and 2d

(2) ◦−: Homogeneous chain

(2) ◦ − •: Chain with two species

(4) �: Square lattices with one and two species

(6) ▽: Homogeneous triangular lattice

(3) ⊛: Hexagonal lattice with one a two species
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Linear chain
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Homogeneous chain Hamiltonian

H◦−fn = E0fn +∆(fn+1 + fn−1) (16)

Propagator

K◦−(n,m; t) = im−nJn−m(2∆t) e−iE0t (17)
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Dimer chain Hamiltonian

H◦−•fn = (E0 + (−1)nµ) fn +∆(fn+1 + fn−1) (18)

Propagator

K◦−•(n,m; t) = e−iE0t

[
H◦−• − E0 + i

∂

∂t

]
G (n,m; t)

G (n,m; t) =

K◦−

(
n,m; 2i∆

2

µ
∂
∂µ

) cos
(
t
√

µ2+2∆2
)

√
µ2+2∆2

for n −m even

0 for n −m odd

(19)
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Spherical wave expansion

G (n,m; t) =

−4i∆t
∑∞

l=0 jl(µ−t)jl(µ+t)

[
P

n−m
2

l (0)

]2
for n −m even

0 for n −m odd

(20)

where µ± ≡ 1
2(
√

4∆2 + µ2 ± µ).
Descending series in µ

G (n,m; t) =

[
1 + (−1)n−m

4

]
×

[
K◦−

(
n,m;

2∆2t√
µ2 + 2∆2

)
+ K◦−

(
n,m;

−2∆2t√
µ2 + 2∆2

)]
+ O(∆3/µ3). (21)
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Square lattice
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The hamiltonian for a homogeneous square lattice reads

H� = H i
◦− + H j

◦− − E0 (22)

with propagator

K�(A,A
′; t) = K◦−(n, n

′; t)K◦−(m,m
′; t). (23)

This product can be extended to all homogeneous cubic lattices in
arbitrary dimensions. Two species:

K�(A,A
′; t) = K◦−(n, n

′; t)K◦−•(m,m
′; t). (24)
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Triangular lattice
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Hamiltonian

H▽ = ∆
∑

A,i=1,...,6

{|A⟩⟨A+αi |+ |A+αi ⟩⟨A|}+ E0 (25)

Propagator

K▽(A,A
′; t) = in

′
1+n′2−n1−n2J

(+)
n1−n′1,n2−n′2

(2∆t;−i) e−itE0

= I
(+)
n1−n′1,n2−n′2

(2i∆t) e−itE0 (26)

where J
(+)
n,m is the two-index Bessel function and I

(+)
n,m is the modified

two-index Bessel function.

K▽(A,A
′; t) =

∑
s∈Z

K◦−(n1, n
′
1 + s; t)K◦−(n2, n

′
2 + s; t)K◦−(s, 0; t) (27)

Emerson Sadurńı (IFUAP) Propagators on lattices August, 2012 35 / 42



Hexagonal lattice
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Hamiltonian

H⊛ = ∆
∑

A,i=1,...,3

{|A⟩⟨A+ bi |+ |A+ bi ⟩⟨A|}

+ µ
∑
A

{|A⟩⟨A|+ |A− b1⟩⟨A+ b1|}+ E0, (28)

This operator is related to a triangular hamiltonian in the form
(H⊛ − E0)

2 = ∆H▽ + µ2. For any spinorial function with components f ±

and triangular lattice variables n1, n2, we write the action of H⊛ as

H⊛f
+
n1,n2 = ∆

(
f −n1,n2 + f −n1−1,n2

+ f −n1−1,n2+1

)
+ (E0 + µ)f +n1,n2

H⊛f
−
n1,n2 = ∆

(
f +n1,n2 + f +n1−1,n2

+ f +n1−1,n2+1

)
+ (E0 − µ)f −n1,n2 (29)

Emerson Sadurńı (IFUAP) Propagators on lattices August, 2012 37 / 42



Propagator: The hexagonal kernel can be written in terms of the
triangular propagator (26). We have the 2× 2 kernel

K⊛(A,A
′; t) = e−iE0t

[
H⊛ − E0 + i

∂

∂t

]
G▽(A,A

′; t) (30)

with the entries of the 2× 2 auxiliary G▽ given by

G+,+
▽ (A,A′; t) = K▽

(
A,A′;

2i∆2

µ

∂

∂µ

) cos
(
t
√
µ2 + 3∆2

)
√
µ2 + 3∆2

G+,+
▽ (A,A′; t) = G−,−

▽ (A,A′; t)

G+,−
▽ (n,m; t) = G−,+

▽ (n,m; t) = 0. (31)
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Conclusion
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We have calculated propagators in discrete variables, apparently for
the first time.

In order to understand such novel objects, we have studied their
properties and extended the Feynman path sums to discrete variables.

We discussed some relevant examples, including the diffraction by
edges and the effects emerging from a minimal spacing.

We established the mathematical form of the solutions and gave a
detailed comparison with a problem in two dimensional space in a
periodic background.

A possible realization has been proposed in tight-binding arrays.

The wide interest in photonic structures suggests applications of our
results in this area, as well as solid state physics in time domain.

Emerson Sadurńı (IFUAP) Propagators on lattices August, 2012 40 / 42



References
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Sadurńı E 2012 Exact propagators on the lattice with application to
diffractive effects arXiv:1205.3972.

Dattoli G, Cesarano C and Migliorati M 2003 Int J Math 4 239-246.
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