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Top Quark Physics

Top Quark
The top quark is the heaviest elementary particle known:
m, =173.2 + 0.9 GeV
Because of its large mass it has a strong coupling to the

electroweak symmetry breaking sector, providing an interesting
probe of the SM.
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Top Quark Physics

Top Quark
The top quark is the heaviest elementary particle known:
m, =173.2 + 0.9 GeV
Because of its large mass it has a strong coupling to the
electroweak symmetry breaking sector, providing an interesting

probe of the SM.

Deviations from the decay and production predictions from the SM
give a model-independent test for physics beyond SM.
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Top Quark Physics
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e Top Quark Pair Production
Top quark pairs are produced via:
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Top Quark Physics
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LEC Top Quark Pair Production
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Gluon Fusion
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in the LHC
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Top Quark Physics

ac‘bOry
1,80 is @ . .
Top Quark Pair Production
Top quark pairs are produced via:
g t g t g t g t
\ g t 9 t 9 t }\ q t }
Gluon Fusion Quark Annihilation
~“90% of the time ~“85% of the time
in the LHC in the Tevatron
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Top Quark Physics

Quark Facto™y

Top Quarks can also be produced via
single-top quark production mechanisms.
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Top Quark Physics

Top Quark Decay
SM favored decay:
b
t >
W
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Top Quark Physics

Top Quark Decay

Other decays are possible via flavor changing neutral currents

u, C u, C u, C
t t t
o g 7 Z
S
~ '\,0
t
S W
M fa,VOI, Q d
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Top Quark Physics

Top Quark Decay

Other decays are possible via flavor changing neutral currents

4 we

We study the decay: +

00010‘3’% ,, N Z_J
f w t — Zq
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Flavor Changing Neutral Currents

Flavor Changing Neutral Currents
FCNC do not exist at tree level in the SM.

Higher order electroweak interactions do
allow FCNC:
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Flavor Changing Neutral Currents

Flavor Changing Neutral Currents
FCNC do not exist at tree level in the SM.

Higher order electroweak interactions do

allow FCNC:
However, the GIM
) : |44
mechanism highly
suppresses the contribution n
from these diagrams...
t u, C
4
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- xo”b‘ Flavor Changing Neutral Currents
o
/ FCNC do not exist at tree level in the SM.
A
R Higher order electroweak interactions do
allow FCNC:
However, the GIM W
mechanism highly
suppresses the contribution ﬁ
from these diagrams... D d; D N
t u, C
4
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Flavor Changing Neutral Currents

Beyond SM FCNC

SM extensions predict higher branching ratios for top quark FCNC decays:

Process SM QS 2HDM FC2HDM MSSM R SUSY
t—uwy 3.7x10716 75x10°9 — — 2x107% 1x10°6
t—-uZ 8 x10717 1.1x10¢ — — 2x107% 3x10°°
t—ug 3.7x107 15x1077 — — 8x107° 2x107*
t—ecy 46x107% 75x107° ~100% ~107° 2x107% 1x10°°
t—cZ 1 x107* 11x107* ~1007 ~1071° 2x107® 3x10°°
t—cg 46x107*2 15x1077 ~107*% ~10°8 8x107° 2x107*
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Flavor Changing Neutral Currents

Beyond SM FCNC
SM extensions predict higher branching ratios for top quark FCNC decays:
Process SM QS 2HDM FC2HDM MSSM R SUSY
t—uy 3.7x1071% 75x10°° - - 2x107% 1x10°°
t—uZ 8 x10717 1.1x104 - - 2106 3 x10°°
t—ug 3.7x107* 15x1077 — Xoﬁ T 2x1074
t—cy 46x107" 75x107° ~107° o @ " x107°
t—cZ 1 x107* 11x107* ~1077 I (107°
t—cg 46x107'2 15x1077 ~ 1071 K v 10~
L o @d g
E. g. in some R-parity violating SUSY §
models, the BR can be enhanced up e v
~ A5 S
to 10 OSP
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Flavor Changing Neutral Currents

Current Experimental Limits

LEP HERA Tevatron LHC
BR(t — ¢y) 2.4%[41-45] 0.64% (tuy) [47] 3.2% [51] —
BR(t — qZ) 7.8% [41-45] 49% (tuZ) [48] 3.2% [52] 0.73% [2]

2.0 x 10~ (tug)
3.9 x 1073 (tcg)

5.7 X 10=° (tug)

BR(t —qg) 17% [46] 13% [48-50] 2.7 x 10~ (tcg)

[54] [55]
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Flavor Changing Neutral Currents

Current Experimental Limits

LEP HERA Tevatron LHC
BR(t — qvy)  2.4%[41-45] 0.64% (tur) [47] 3.2% [51] -
BR(t — qZ) 7.8%[41-45] 49% (tuZ) [48] 3.2% [52] 0.73% [2]

2.0 x 10~* (tug)
3.9 x 1073 (tcg)

5.7 X 10=° (tug)

BR(t — qg) 17% [46] 13% [48-50] 2.7 x 10~* (tcg)

[54] [55]

Before the LHC searches, best limit
from DO Collaboration:

BR(t — Zq) < 3.2%

using top quark pairs, with W- and Z-
bosons decay leptonically.
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Flavor Changing Neutral Currents

Search for FCNC in top quark decays:

In top quark pair production events:
with one top quark decaying through t—->qZ,
and the other through the SM dominant mode t—=>bW.
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Flavor Changing Neutral Currents

I search for FCNC in top quark decays:

In top quark pair production events:
with one top quark decaying through t—->qZ,
and the other through the SM dominant mmode t>bW.

Only leptonic decays of the W- and Z-bosons are used as signal
! | » 4 l, {q

Z "
Z Decay Modes: W Decay Modes:
Z—w

® Z - eelpyu : w - IT‘C

® Z->T1 -

@ Z—» hadrons ® W — hadrons
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Flavor Changing Neutral Currents

I search for FCNC in top quark decays:

In top quark pair production events:
with one top quark decaying through t—->qZ,
and the other through the SM dominant mode t—=>bW.

tt —>bWqZ —blvql!
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Large Hadron Collider @CERN

~n

T ———

-

ATLAS
detector

ST T R
. & ~ )
<
| /.

World’s largest and most
energetic particle collider!
pp collisions at Vs =7 TeV in
2010-2011,
and a peak luminosity:
3.6x1033 cm=gl
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ATLAS Detector

- bl Lab

25m

Tile calorimeters
LAr hadronic end-cap and
forward calorimeters

Pixel detector

LAr electiromagnetic calorimeters

Toroid magnets

Muon chambers Solenoid magnet | Transition radiation fracker
Semiconductor tracker
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p

Inner Detector

Silicon pixels and ab

strips, TRT.
Solenoid provides 2T ’
magnetic field

25m

Tile calorimeters
- . LAr hadronic end-cap and
. forward calorimeters
Pixel detector \

gnefs LAr electiromagnetic calorimeters

inner detector coverage |n| < 2.5
o(pr)/pr (@pr = 100GeV) 3.8%

olenoid magnet | Transition radiation fracker
Semiconductor tracker
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ATLAS Detector

EM calorimeter coverage || < 3.2 ) - bl b
o(E)/E :10% /E +0.7 %
HAD calorimeter coverage |n| < 3.2 44m
_________/\

\_ O'(E)/EEMandHADcomb. : 50‘70' /\/E +3 % )

25m

Calorimeters

LAr hadronic

LAr/Lead EM calorimeter;-*
------------------- to identify electrons/yussas™

Scintillation-tile (plastic/steel) &
hadronic calorimeter aromeonete

LAr forward (FCal)
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ATLAS Detector

" N hl as
muon spectrometer coverage |n| < 2.7
U(pT)/pT (@pT - 1 TeV) stand-alone + 12% Im|<1.5 44m

. —

—
-

L ; TN
= ——
: LS

“,, *,_,__— -

Thin-gap chambers (TGC)

N\ Cathode strip chambers (CSC)
2\ f
=\

Muon Spectrometer AN
3 ‘J\:‘ /x

\ Tile calorimaters

7 \ \= ¢ \ ] v
ﬂ\ b{\ LAr hadronic enz-cap and
w | \ \forward caloriineters

With trigger and high-
precision chambers

jnetic calorimeters
r

Barrel toroid

i Resistive-plate
chambers (RPC)

End-cap toroid
Monitored drift tubes (MDT)
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Object Selection

Isolated Electromagnetic on
clusters associated to Inner
Detector track.

pr> 20 GeV, |n|< .47

Exclude transition region
between Barrel and End-Cap

Hadronic
Calorimeter

Calo-iso(AR < 0.2) < 3.5GeV

Electromagnetic
Calorimeter

Solenoid magnet

Transition
Radiation
Tracking Tracker

Pixel/SCT
detector
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Object Selection

ID electrons

Muon
Spectrometer

Tracks segments from MS
matched to tracks from iy
Inner Detector, & refitted. Ay b

t pT > 20 Gev, |n | < 2,5 Hadronic

Calorimeter

Calo-iso(AR < 0.3) < 4 GeV N ] & s
. N e dashed tracks
Trk-iso(AR < 0.3) <4 GeV ; the dofecicr
Electromagnetic ' .

| dol < 0.5 mm Calorimeter

Solenoid magnet

Transition R '."

Radiation SN SO ATI AC

Tracking Tracker o B AN e all g,

Pixel/SCT ' 2 A CVDEDIMENT
detector 2N et b
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Object Selection

ID electrons

Muon
Spectrometer

track-leptons (TL)

.
Neutriné
L

High quality
inner detector tracks Had

't Calorimeter

> Im|<
CE pT 2 5 Gev, TI 2 .4 \ .
( S e o Neuiron v '." The dashed tracks
T‘ ' ; g are invisible to

Electromagnetic

Calorimeter - »Eigttrons”
o Photon @ v
IIlIleP deteCtOP hlt Solenoid magnet .
Transition
i Radiation
requirements Tradinad o
Pixel/lSET
detectory
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Object Selection

ID electrons

Muon
Spectrometer

track-leptons (TL)

.
Neutriné
L

High quality

inner detector tracks
1 Recovers areas of inefficiency in the

tandard lepton identification
>25 GeV, [n|<2.4 S
Pr Il algorithms, and selects a fraction of
hadronic tau decays.

Trk-Iso(AR < 0.3) < 2GeV

Electromagnetic

Calorimeter A
IIlIleP deteCtOP hlt Solenoid magnet \ : '
Transition : Yy %
3 Radiation A pais SATIAC
Pequlrements Tracking Tracker — vy |
Pixel/S§T e % EVPEDIMENT
detectory et by

http://atlas.ch
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Object Selection

ID electrons

Muon
Spectrometer

.
Neutriné
L

Reconstructed with anti-k,
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Object Selection

ID electrons

Muon
Spectrometer

fo{)n
A\ \

'\

\ ..;‘ ' \ g Neutrind
VN ] 7
Uy

“ il 3

\ - % L)

| T

ID jets

{

Reconstructed with anti-k, : 4
¢ Ui algorithm (AR=0.4), Jets can be ‘b-tagged’ if they are consistent
T ;  starting from energy with originating from a b-quark

clusters in the calorimeter. (association with a secondary vertex, impact
parameter of tracks associated to the jets, etc)

pr> 25 GeV, [n| <2.5

Radiation X ( ATI AC
Tracking Tracker , X \

\ o
‘ A Nl
Pixel/SCT X y & % CVDEDIMENT
’
'&\ e
=

detector

http://atlas.ch

Particles and Fields Seminar
Arely Cortes-Gonzalez BUAD August 16,2012 14



Object Selection

ID electrons

Muon
Spectrometer

.
Neutriné
L

Proton

( Neutron| /' 2 The dashed tracks
; : rd J are invisible to
the detector

| Eg™iss: Negative vector sum
of the transverse momenta
of reconstructed objects gEEFETEEE

Transition \ : ,‘ '."
Radiation ALY s > ATI AC
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Data Sample

T e —————r ————
— ATLAS Online Luminosity Vs=7TeV

[ LHC Delivered
©  [__] ATLAS Recorded

E Total Delivered: 5.61 fb”
F  Total Recorded: 5.25 fb™

ed Luminosity [fb

7
6
5
4

I present results with 2011 data,
2.1 fb! of integrated luminosity

.

2010 2011 2012

# interactions
per BC 2 6-12 25
V8 7 TeV 7 TeV 8 TeV

peak luminosity 2.1x10%2 em™2s~! 3.6x10%% ecm~2%s~! 5.54x10% ecm~2%s~!
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Event Selection

The final state is characterized by

three isolated leptons, two of them

reconstructing a Z-boson, missing
energy, and at least two jets.

Particles and Fields Seminar
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Event Selection

There are two orthogonal channels used for the final result:

21D + TL 3 1D |
& leptons are fully identified, and Selects 3 fully identified
the third one is allowed to be a leptons (e, w).

high quality inner detector track.
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Arely Cortes-Gonzalez BUAP August 16, 2012 17



Event Selection

I

There are two orthogonal channels used for the final result:

21D + TL 3 ID \
& leptons are fully identified, and Selects 3 fully identified
the third one is allowed to be a leptons (e, w).

high quality inner detector track.

b 4 Track-leptons (TL) are exclusive of
any electrons or muons (ID Leptons)
v g ! W selected by the 3ID analysis.
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Event Selection

Preselection

o Basic Cuts, Trigger

o Exactly three leptons
o all matched to the same Primary Vertex

3ID
RID*TLr w0 ID leptons + one TI. Three ID leptons

P,™L > 25 GeV, P& "> 20 GeV P;lead> 25 GeV, Pysublead > 20 GeV

o T'wo leptons of the same flavor and opposite charge
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Event Selection

Preselection

o Basic Cuts, Trigger

o Exactly three leptons
o all matched to the same Primary Vertex

3ID
RID*TLr w0 ID leptons + one TI. Three ID leptons

Pl > 25 GeV, P54 > 20 GeV P;lead> 25 GeV, Pysublead > 20 GeV

o T'wo leptons of the same flavor and opposite charge

o Eq™ss > 20 GeV
o Two or more ID jets RID*TL )., 4 o jet b-tagged
b 4
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Event Selection

Preselection

o Basic Cuts, Trigger

o Exactly three leptons
o all matched to the same Primary Vertex

3ID
RID*TLr w0 ID leptons + one TI. Three ID leptons

Pl > 25 GeV, P54 > 20 GeV P;lead> 25 GeV, Pysublead > 20 GeV

o T'wo leptons of the same flavor and opposite charge

o Eq™ss > 20 GeV
o Two or more ID jets RID*TL )., 4 o jet b-tagged
b 4 \

Final Selection

o Bvent Reconstruction

2 2
reco __ reco __ 2 2
(mjalfaeb mt) (mjbecu mt) (m;ec" — mW) (mEeCEO — mZ)
2 cV atb
- + + +
X 2 2 2 2

0y 0y Ow 0z
Particles and Fields Seminar
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21D+TL Event Selection

Final Selection ‘

o Bvent Reconstruction

To reconstruct the mass of the two top quarks and
W- and Z-bosons , x* is minimized:

2 2
mI:eCO —m ) (mI:eCO —m ) reco __ 2 reco __ 2
9 ( Jalalhp 3 Jolev ¢ (mﬁcu mW) (meaeb mZ)
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21D+TL Event Selection

Final Selection ‘

o Bvent Reconstruction

To reconstruct the mass of the two top quarks and
W- and Z-bosons , x* is minimized:

2 2
reco reco 2 2
(mjaeaeb — mt) (mjbecll — mt) (mreCO _ mW) (mreco _ mZ)
X = 0'2 0'2 0'2 0'2
t t %% Z

0 Ja, Jp, l0OPS over the two leading ID jets

my=172.5 GeV oy =14 GeV
mw = 80.4 GeV  ow =10 GeV
my= 91.2GeV oy= 3 GeV
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21D+TL Event Selection

Final Selection ‘

o Bvent Reconstruction

To reconstruct the mass of the two top quarks and
W- and Z-bosons , x* is minimized:

2 2
reco reco 2 2
(mjafaeb — mt) (mjbecl/ — mt) (mreCO _ mW) (mreco _ mZ)
X = 0'2 0'2 O'2 0'2
t t %% Z

0 Ja, Jp, l0OPS over the two leading ID jets

o0d,, Z->L,* 4, loop over the three leptons

my=172.5 GeV oy =14 GeV
mw = 80.4 GeV  ow =10 GeV
my= 91.2GeV oy= 3 GeV
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21D+TL Event Selection

Final Selection

o Bvent Reconstruction

To reconstruct the mass of the two top quarks and
W- and Z-bosons , x* is minimized:

2 2
reco reco 2 2
(mja,gaeb — mt) (mjbecy — mt) (mreCO _ mW) (mreco . mZ)
X = 0'2 0'2 O'2 0'2
t t %% Z

0 Ja, Jp, l0OPS over the two leading ID jets
o0d,, Z->L,* 4, loop over the three leptons

o BE;™ss is taken to be the transverse
component of the neutrino p.".

my=172.5 GeV 0y =14 GeV o py'¥is the determined by the minimal x?
mw = 80.4 GeV ow =10 GeV

my= 91.2GeV oy= 3 GeV
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Event Selection

Preselection

o Basic Cuts, Trigger
o Exactly three leptons

o all matched to the same Primary Vertex

3ID
RID*TLr w0 ID leptons + one TI. Three ID leptons

Pl > 25 GeV, P54 > 20 GeV P;lead> 25 GeV, Pysublead > 20 GeV

o T'wo leptons of the same flavor and opposite charge
o B8 > 20 GeV

o Two or more ID jets RID*TL )., 4 o jet b-tagged

\
Final Selection

o Bvent Reconstruction
o |mg,-mytece| <18 GeV
O | myy - myec0| < 30 GeV
o |m, - mrece| <40 GeV
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21D + TL Gain
The ZID+TL gives a 22% gain wrt the 3ID channel alone.

Gain

This gain comes mainly from e and u in the
transition regions and gaps in detector
coverage.

There is also a partial recovery of
efficiency losses in the e and u selection
and additional acceptance from hadronic
taus.
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o Top Quark Physics
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o ATLAS Detector

o Object and Event Selection
o Backgrounds
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Backgrounds

SM processes that have a similar
final state topology

b 4
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Backgrounds

SM processes that have a similar Three Real Leptons

final state topology Dibosons WZ. 77

b 4 t-tbar+W, t-tbar+Z

— a4 at least one Fake Lepton

t-tbar, Z+jets, W+jets, WW, single top

Particles and Fields Seminar
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Backgrounds

Three real leptons

Dibosons WZ, 27
t-tbar+W, t-tbar+Z

Determined using MC samples.

Contributes to 7 15% of the 2ID + TL background.
Main background for the 3ID selection

Particles and Fields Seminar
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Backgrounds

Fake Leptons
t-tbar, Z+jets, W+jets, WW, single top

Events with at least one fake - any object identified as
a lepton that does not come from a W- or Z-boson.

Evaluated with a data-driven (and MC) methods.

Dominant background source of the 21D + TL.

Particles and Fields Seminar
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LID+TL Fake Leptons

Strategy

I [*

jets jets

We measure the probability that a jet fakes a track, ‘fake rate’

Measure the fake rates in y+jets events

N f all selected track lept
Fake Rate (pTaNPVX) — (pTa PVX) OI all selecte rac eptltons

(pr, Npyx) of all ID jets & jet — elements

Particles and Fields Seminar
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LID+TL Fake Leptons

o TH Estimation

I [*

Jets | jets

N N PVX

PVX " Jets in 2 leptons +Jets Fake Rate Matrix

Finally, to account for
the mass cuts after the

Jets (p>Npyyx) Fake Rate (p;,Npyy) = .
= minimization,
) ! the fake prediction is
Pr Pr scaled by (31.2+10.2)%
Prediction = E Jets,, ..., xFakeRate . |
(Pt -Npyx)
Particles and Fields Seminar
Arely Cortes-Gonzalez BUAP August 16, 2012 24



3ID Fake Leptons

719 Strategy

The background from fake leptons is estimated for events with
one fake leptons, and events with 2 or 3 fake leptons.

Particles and Fields Seminar
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3ID Fake Leptons

)
2,19 Strategy

Prie background from fake leptons is estimated for events with
one fake leptons, and events with 2 or 3 fake leptons.

One fake events

%109 ||||||l||||||||||||||||||||||||||||J_§
ATLAS e data
o Ztjets g 10° D:ITISM) E
. -~ -1 single to, -
We use a control region to compute a 2 10’ J Ldt=2.11f -d_bg’ op (W 3
. . 6 iposons h
normalization between data and MC. i I Wajots 5
. . > +jets =
Control region: Events with two leptons and 10 jk’ . T
m, Fe - 91.2 GeV| < 15 GeV. 10° T
10° E
Dat MC 107
NData . N7 — N, Other backgrounds NMC
[ Z+jets]SR - NMC ’ [ Z—i—jets] SR, 10
Z+jets CR 1
. . -1
A loose lepton selection is used, and a 10 )
multiplicative factor is applied to the final result: 0 50 100 150200 250 500 350 490
(loose - tight) 0.063 + 0.013 ET® [GeV]
Particles and Fields Seminar
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3ID Fake Leptons

719 Strategy

Pre background from fake leptons is estimated for events with
one fake leptons, and events with 2 or 3 fake leptons.

One fake events

o Z+jets

We use a control region to compute a
normalization between data and MC.
A loose lepton selection is used, and a
multiplicative factor is applied to the final result:
(loose - tight) 0.063 + 0.013

o Dileptonic t-tbar, single top (Wt), WW.
Measured in MC with the loose lepton
selection, and scaled down by the same factor.
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3ID Fake Leptons

719 Strategy

Pre background from fake leptons is estimated for events with
one fake leptons, and events with 2 or 3 fake leptons.

2+3 fakes events

o QCD, W+jets ,s ingle top, single lepton t-tbar

Due to the requirements of two leptons with same charge and opposite sign
(36 combinations), this background is extrapolated from the data events with 3
leptons of any flavor, but same charge (16 combination).

f=36/16 = 2.25

Particles and Fields Seminar
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E ™8 Plots at pre-selection level

3 1D | 21D+ TL M |
% [T T T | I T T T T T I T T T | T T ] % 18__[ TT | TTT | TTT I TTT I TTT | TTT I TTT I TTT | TTT l T I__
O] . ATLAS e data INNG] - ATLAS e data ]
g 50 - ] T t?_> WbZq signal_ g 1 6:— ] ---- ft—> WbZq signal—:
f2) :JLdt=2.1 fo -ttW/Z - {2 :ILdt=2-1 fb— -fakes ]
S i [ it (sm 1 S 14 P -
Lﬁ 40_—3|D -single top (SM) Lﬁ 12:_2|D +TL Z.b _:
i - Zejets ] . ibosons ]
- ) dibosons ] 10 o % stat. uncertainty -
30 ;_/ stat. uncertainty B E E
i 8- 7
0 -4"'|".|"|-"|"|h-|"?‘l"'!ﬁﬁi‘{‘k-t‘.‘g—f—m_“lLL Lo .

80

0 40 120 160 200 0 40 80 120 160 200

ETss [GeV] ET* [GeV]
This plot includes a cut on the Z- . .
After b-tagging condition

boson candidate invariant mass
|m,-91.2|<18 GeV
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rrryprrrryrrrrryrrrr[yrrror[rrrT
F I I I I

I I I I

2 3 o
& 8 artLas o data 1 & 8 amas . data *
S i ---- ft—> WbZq signalj 'C—) i ---- ft—> WbZq signalj
= 7 § 1 - 7t § ]
2 :fL dt=211" g ke 1 % :fL dt=211" g ke :
- o - 4 [ - ]
. . 6 - - 6 _ ]
2ID + TL Final Selection i FoD+ TL B w2 ] Jﬁ) FoID+ TL B w2 ]
H dibosons - - dibosons
ZZ and WZ 1.0 i_ 82 5? /) bkg. uncertainty? 5? bkg. uncertainty?
W and ttZ 0.25 £ 0.05 g | - t27 |
fakes 7.6 +2.2 1 - E
expected background 8.9 £2.3 E g ]
data 8 E b E
80 85 90 95 100 105 140 160 180 200 220
m, [GeV] myq [GeV]
Final S ele Ction l > 1 4 =TT T ‘ 1T 1T ‘ T T T T ‘ T T ‘ T T T T > - ‘ ‘ ‘ ‘
| & | ATLAS o data 1 & [ amas o data ,
% 12 ¥ i} - t?:w;Vqu signal g 12:* . - t:t—> WbZq signal |
' = f t=21fb tt ® de’[=2.1 fb -ttW/Z i
3ID Final Selection S Lol [t (sm S 10 [ et (sm ]
77 and WZ 95 +44 “ Tap B z+jets 1 @ [3D W zeiets i
_ _ = dibosons - B dibosons ]
ttW and ttZ 0.51 £ 0.14 8- > e 8- v —
_ L bk . uncertainty | L 7 . uncertainty -
t, WW 0.07 =+ 0.02 : A7 g 79 ek, ncerainty
7 +jets 1.7 +0.7 oF 7> g+ p- . 6f .
Single top 0.01 £+ 0.01 i I
2+3 fake leptons 00 =+ g2 ar ] ]
expected background 11.8 =+ 4.4 2i 1 ! 2
data 8 i ] 7]
Lo i 1] ok (ERER
100 105 140 160 180 200 220

Arely Cortes-Gonzalez m, [GeV] my, [GeV]



Outline

o Top Quark Physics
o Motivation

o ATLAS Detector

o Object and Event Selection
o Backgrounds

o Systematic Uncertainties
o Limit Calculation

o Conclusions
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oystematic Uncertainties

Systematic uncertainties can influence the expected number of signal
and/or background events:
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Systematic Uncertainties

Systematic uncertainties can influence the expected number of signal
and/or background events:

Fake TL Prediction

To estimate the systematic uncertainty on the & ' aras  « e
prediction, the fake matrix is tested in control = 103; Ldi=21 1 ;Z;:V"z‘”'g""i
regions (orthogonal to signal regions) 5 M vz 5
enriched with fake leptons. 10°;

Events / 1

dibosons |

bkg. uncertainty ?

Check two regions of E;™¢ for events with: N

two leptons + fake and one jet events.

Events with lepton+fake, done in the context

of the cross section measurement. 0 40 8 120 160 200

ET® [GeV]
A 20% systematic uncertainty is used for the fake leptons prediction.
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oystematic Uncertainties

Systematic uncertainties can influence the expected number of signal
and/or background events:

WZ, 27 Background

o Cross Section
Include the 5% theoretical uncertainty.

o HF content (when b-agging is used)
Estimate by comparing different MC generators.

o MGC modelling
Using the Berend-Giele scaling with a 24% uncertainty per jet,
added in quadrature (4% is used for the O-jet bin).

Particles and Fields Seminar
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Relative changes
on the expected
number of total

background
events and signal
yield from
different sources
of systematic
uncertainty.

31D 2ID+TL

Source Background Signal | Background Signal
Luminosity 4% 4% <1% 4%
Electron trigger 4% 1% <1% <1%
Electron reconstruction modelling 10% 3% <1% 2%
Muon trigger 3% 1% <1% <1%
Muon reconstruction modelling ™% 1% <1% 1%
TL reconstruction modelling —_ — 2% 1%
Jet energy scale 11% 1% 1% 1%
Jet reconstruction efficiency 5% 2% <1% <1%
Jet energy resolution 1% 3% 1% 4%
E’lmss modelling 4% 1% <1% <1%
LAr readout problem 3% 1% <1% 1%
Pile-up 1% <1% <1% <1%
b-tagging — — 1% 6%
Top quark mass <1% 2% — 3%
O <1% 8% — 8%
ISR/FSR <1% 3% — 6%
PDFs —_ 3% — 3%
ZZ and W Z shape 33% — 5% —

ZZ and W Z cross section 1% — <1% —

ZZ and W Z heavy-flavour content — — <1% —
Fake leptons 1% — 17% —

Total 38% 12% 18% 15%




Outline

o Top Quark Physics
o Motivation

o ATLAS Detector

o Object and Event Selection
o Backgrounds

o Systematic Uncertainties
o Limit Calculation

o Conclusions
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Why compute a Limit?

Final Selection

3ID 2ID+TL
ZZ and WZ 9.5 + 44 1.0 + 82
ttW and ttZ 051 £ 0.14 025 £ 0.05
tt, WW 007 £ 0.02
Z+jets 1.7 £ 0.7
Single top 0.01 £ 0.01 re = 22
243 fake leptons 00 + 32
Expected background 11.8 £+ 44 89 £+ 23
Data 8 8
Signal efficiency (0.206 £ 0.024)% | (0.045 £ 0.007)%
Particles and Fields Seminar
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Why compute a Limit?

Final Selection

3ID 2ID+TL
ZZ and WZ 9.5 + 44 1.0 + 82
ttW and ttZ 051 <+ 0.14 0.25 £ 0.05
tt, WW 0.07 =+ 0.02
Z+jets 1.7 £ 0.7
Single top 0.01 + 0.01 re = 22
243 fake leptons 0.0 + J32
Expected background 11.8 £+ 44 89 £+ 23
Data 8 8
Signal efficiency (0.206 £ 0.024)% | (0.045 £ 0.007)%

Good agreement between data observation and expected
Standard Model background.
No evidence for flavor changing neutral currents is found.
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Limit Calculation

I

o We derive 95% CL limits on the BR for this FCNC decay using
the modified frequentist (CL,) likelihood method.
o CL, is used for small signals.

o Statistical and Systematic uncertainties are taken into
account (Gaussian distributions).

o For the combination: systematic uncertainties of the MC-
backgrounds and signal samples are taken to be fully
correlated between 3ID and QID+TL. Other sources (statistical
and systematic) are considered uncorrelated.

Particles and Fields Seminar
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Limit Calculation

o 10° pseudo experiments are performed
to compare the background-only and the

signal+background hypotheses to the

data.

o The statistical fluctuations of the
pseudo —experiments are
implemented using Poisson

distributions.

Pseudo experiments / 1000

o This gives a limit on the number of

signal events.

o Converted into upper limits on the
corresponding BRs using the
approximate NNLO calculation of the
cross section: oy = 1657 ¢ pb

Arely Cortes-Gonzalez

Particles and Fields Seminar
BUAP

Limit

10
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Limit Calculation

Limit
channel observed (—1o) expected (+10)
31D 0.81% 0.63% 0.95% 1.42%
2ID+TL 3.18% 2.15% 3.31% 4.86%
Combination  0.73%  0.61%  0.93%  1.36%

)

Observed in data

Expected sensitivity, assuming
that the data are described

correctly by the SM

Particles and Fields Seminar
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Conclusions

o Top Quark Physics
o Motivation

o ATLAS Detector

o Object and Event Selection
o Backgrounds

o Systematic Uncertainties
o Limit Calculation

o Conclusions
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Conclusions

FCNC in Top Quark Decays

o A search for flavor changing neutral currents in top
quark decays has been presented.

o The search was performed in 2.1 fb'! of 2011 pp
collision data.
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Conclusions

FCNC in Top Quark Decays

o A search for flavor changing neutral currents in top
quark decays has been presented.

o The search was performed in 2.1 fb'! of 2011 pp
collision data.

o Two orthogonal channels were introduced: 2ID+TL

) i 2.1 fbl
and 3ID, and their results combined. _—
o A publication has been submitted to JHEP. 1206.025"
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Conclusions

FCNC in Top Quark Decays

o A search for flavor changing neutral currents in top
quark decays has been presented.

o The search was performed in 2.1 fb'! of 2011 pp
collision data.

o Two orthogonal channels were introduced: 2ID+TL
and 3ID, and their results combined.

o No evidence for FCNC signal has been found, and an
upper limit on the t->2q branching ration of

BR <0.73%
is set at 95% CL. This observed limit is in agreement
with the expected limit of BR < 0.93%
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FCNC in R-parity violating SUSY

-2
10
E Br(t—cq)/(0.2A)°
-3
—4
10 E
Br(t—=¢7)/(0.20)°
-5 B
10 E
-B i
10 |
. RSN S AT S SN NS ST Y SN ST S AN S SN S N SO SO S ‘—u\l\l

r\)._

120 140 160 180 200 220 240 260

Squark Mass (GeV)
FIG. 3. The plot of Br(t — ¢V)/(0.2A)? as a function of squark mass.

A being the product of the baryon number violating couplings.
A =1, and masses as high as 170 GeV, for the values quoted before
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Track inefficiencies

—~ 0.2F

T T T T

S o8 mp_=100GeV E g 80 -
% 0.16] 4 p,=5GeV R B (5 oo
% 014 Op,=1GeV b 60}
012f . = s0[- e
0.1F E sofe T e
o DR B |
0:0457—I+I7: R N s 4 20;_ ?
0'02:— & i E 10; -
- 1 1 1 1 1 . C L 1 L L 1
% 05 1 75 2 25 % 05 1 15 2 25

Figure 198. Relative transverse momentum resolution (left) as a function of || for muons with pr = 1 GeV
(open circles), 5 GeV (full triangles) and 100 GeV (full squares). Transverse momentum, at which the
multiple-scattering contribution equals the intrinsic resolution, as a function of |n| (right).
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Figure 202. Track reconstruction efficiencies as
a function of |n| for muons, pions and electrons
with pr = 5 GeV. The inefficiencies for pions
and electrons reflect the shape of the amount of
material in the inner detector as a function of |7|.

Figure 203. Track reconstruction efficiencies
as a function of |n| for pions with pr =1, §
and 100 GeV.
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Fake Lepton Systematic Uncertainty

Systematic uncertainties can influence the expected number of signal

and/or background events:

eTL uTL

#jets 0] B ! P . (B-O)/P [%] 0) B P . (B-O)/P [%]

0 (OS) 411 436.332:‘; .+ 199.1+£9.3 . 460 441.1j§§:g 321.9+484

1 (0S) 201 207.1’:;2:‘5’ 99.0 £4.2 247 270.5f};§ 142.5 £ 6.0

2 (SS) 10 | 10.7+£08 ;| 7.6+0.7 14 | 139+1.0 11.1£0.9

3 (SS) 7 6.2+0.5 54+0.35 8.3+0.7 7.0+£0.6

4 (SS) 4 41+04 38+04 1 32+04 3.1+04

> 5 (SS) 2 19+£0.1 : 18+0.1 1.5+£0.2 14+£02

Total 635 666.41'2;:2 . 3166 £10.3 9.9ﬁ}g:§ 731 738.5j§§:g 487.0 +48.8 . l.Sﬁgg
Background: includes the contribution from other sources (Z/g*, diboson, single top)
Prediction: contribution from fakes prediction only.

By comparing the agreement between background prediction and observation,
we estimate a 80% systematic uncertainty on the fake prediction
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/TOPQ-2011-03
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_ sznbfrev'YrF

L
dme, 3*

injection collision
Proton energy [GeV] 450 7000
Relativistic gamma 479.6 7461
Number of particles per bunch 1.15 x 10!
Number of bunches 2808
Bunch spacing [ns] 24.95
Longitudinal emittance (40) [eVs] 1.0 2.5
Transverse normalized emittance [pm rad| 3.5 3.75
Circulating beam current [A] 0.584
Stored energy per beam [MJ] 23.3 362
Geometric luminosity reduction factor - 0.836

Assuming a peak luminosity of 1054 cm=s!

LHC

LHC7TeV p-p

LEP 100 GeV e*-¢

HC
<> Heavy lons

Positrons Booster (1.4 GeV)

EP EPA
Electrons
LIL ¥ ¢ LINACS

lon Accumulator

LEAR)
Protons lons 1

50 MeV LINACS CERN AC - HF 208
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Trigger

The level-1 (LVL1) trigger makes an initial Interaction rat

e ( ) q &8 g S e GHz [ CALO MUON TRACKING
§e ectlon' using reduced granularity Bunch crossing
information from a subset of detectors, rate 40 MHz Piveli

. - LEVEL 1 memories
and based on combinations of objects TRIGGER
required in coincidence or veto. < 75 (100) kHz
The level-2 trigger makes use of “region of Derandomizers
interest” information provided by the LVL1  Regions of Interest | | | aey drivers
trigger. LEVEL 2 % Readout buffers
TRIGGER 1}-4 (ROBs)
: ~ 1 kHz
The event filter (EF) uses the full event
K . | Event builder |

data, together with the latest available
calibration and alignment information to EVENT FILTER Full-event buffers
make the final selection of events to be ~ 100 Hz processor sub-farms
recorded.

Data recording

At the EF level, the lepton triggers require p; > 20 GeV/c and E; < 6
GeV in a cone of AR=0.2 around the lepton.
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Magnets

[ (testa.m)

8 barrel toroid coﬂs;ﬁiahe end-cap coils

interleaved. The solenoid winding lies inside the
calorimeter volume.

n
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Charge particle tracking svstem huilt on two technologies

Drift tubes:

~300.000 straw tubes
resolution 130 gm (R¢h)
XeCOxOn

TRT 36 hits per track

rR = 1082 mm

\_R = 55¢ mm
(R=514mm

Silicon:
~ 3M Si strips
resolution: 23 ym (R¢)
S80 pm (Z)

R= 443 mm
:CT{

R=371mm

L R=299 mm = . S
: -9 hits per track
- 7 -
scT pe
_ ~ 80M Si pixels
R=E12Z25mmi—""" o ele—— Pixets resolution: 14 pym (R¢)
Piaus {R=88.5mm =
- —— 115 pm (Z)
R=50.5mm - —
~ — > .
R=0nu 3 hits per track 5
punuREEn
System  position area [m?] resolution o [um] channels (10°) 7 coverage
1 removable barrel layer 0.2 R¢$=10,2=115 16 +2.5
Pixels Z ba.:lrel lﬂ};r; 1.4 R¢ =10, 2=115 81 +1.7
I 07 R$=10,R=115 43 17-25
on each side
4 barrel layers 34.4 R¢ =17, z =580 3.2 +1.4
gop 9 end-cap wheels 267  Ré =17, R =580 3.0 14-25
on each side 21m
axial barrel straws 130 (per straw) 0.10 +0.7
gy radial end-cap straws 130 (per straw) 0.32 07-25
36 straws per track

Par
Arely Cortes-Gonzalez End-cap semiconductor tracker




EM calorimeter barrel end-cap

coverage |n| < 1.465 1.375 < |n| < 3.2

longitudinal segmentation 3 samplings 3 sampling 1.5 <|nl <25
2 sampling 1375 < |n| < 1.5

25 <|n|<3.2

granularity (An x Ag)

sampling 1 0.003 x 0.1 0.025 x 0.1 1375 < |n| < 1.5
0.003 x 0.1 1.5 <|n/ <18
0.003 x 0.1 1.8 <|n <20
0.003 x 0.1 20 <|n|l <25
01 x0.1 25 <|n| <32

sampling 2 0.025 x 0.025 0.025 x 0.025 1375 < |n| < 2.5
01 x0.1 2.5 < |n| <3.2

sampling 3 0.050 x 0.025 0.05 x 0.025 15 <|n <25

Presampler barrel end-cap

coverage In| < 1.52 1.5<|n <18

longitudinal segmentation 1 sampling 1 sampling

granularity (An x Ag) 0.025 x 0.1 0.025 x 0.1

Hadronic tile barrel end-cap

coverage In| < 1.0 08 <|n <17

longitudinal segmentation 3 sampling 3 sampling

granularity (An x Ag)

samplings 1 and 2 0.1 x0.1 0.1 x0.1

samplings 3 0.2x0.1 0.2 x0.1

Hadronic LAr end-cap

coverage 1.5 < |n| <3.2

longitudinal segmentation 3 samplings

granularity (An x Ag) 0.1 x0.1 15<n <25
0.2 x0.2 25<|n <32

Forward calorimeter end-cap

coverage 3.1<|n <49

longitudinal segmentation 3 samplings

granularity (An x Ag) ~0.2x0.2

,er

Abso.

Leﬁgth
S

rption

10

~
(Y

Material Jin front of Muon System

L

Em; of active
hadronic

Hafdronic endcap | Forward

yostat walls

4 5
Pseudorapidity

Figure 1-4 Amount of material (absorption lengths) in the ATLAS calorimetry as a function of 1.
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Calorimeter

Tile CalorimebE
EM Calorimeter Towersia Sampling 3 %

pen = 0.02450.05

.h.l -‘ .
e
~ Double E
T readout
AAK

NN | .

A -~ ™~ =
| '&nhd.(qn?lmm . -. .
Stiptowers in Sampling | Figure 2-1 The principle of the Tile Calorimeter
) design.
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Muon Spectrometer

Resistive plate chambers
MoT chamb“s 2m MDT chambers (
%

Barrel toroid

) = | ’-.,. Resistive plate chambers , coils
End-cap
i “ Barrel toroid coil
— T 8
~Thingap & 6
chambers "~ |
4
toroid
__\_\—\_ 2
Radiation shiald Cathode strip Calorimeters
— chambers
L o — = : _‘. 0 2 k *\
20 18 16 14 12 10 2m

Two regimes

pr >6 GeV/c
Muons hit all spectrometer lavers.

Precision chambers
oMDT (Monitored Drift Tube)
o Barrel (|n|<1.0)
oEndCap (1.0<|n|[<R.7)
©CSC (Cathode Strip Chambers)
oEndCap
Trigger Detectors
oRPC (Resistive Plate Chambers)
oTGC (Thin Gap Chambers)

Arely Cortes-Gonzalez

- Can trigger on these muons.
> p* measured in the muon
spectrometer and inner detector,
pr =6 GeV/«
Muons hit only inner layers.

- Cannot trigger on these muons.
> p* measured only in the inner
detector.
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oystematic Uncertainties

Systematic uncertainties can influence the expected number of signal
and/or background events:

Miscellaneous

o Luminosity
Estimated to be 3.7%.

o b-tagging
MC modelling of the b-tagging efficiency.

o ISR/FSR, Top quark mass, PDF used for signal generation, t-tbar
Cross section.
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oystematic Uncertainties

Systematic uncertainties can influence the expected number of signal
and/or background events:

Object Specific

o Muons, Electrons, TL
MC modelling of Trigger (e, u), reconstruction and identification
efficiencies and of the energy/momentum scale and resolution.

o Jets
Energy scale of light-quark jets and b-jets (including pile-up).
MC modelling of jet energy resolution. Jet reconstruction efficiency.

O ETmiss

Corrections on the leptons and jets are propagated to the E™ss,
Effect of energy in calorimeter not associated to reconstructed
objects, low momentum jets, and MC modelling of pile-up.
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Simulated Samples

All MC samples are processed with the GEANT4 simulation of the ATLAS detector.

Process Generator PDF other
tt, single top-quark MC@NLO CTEQ6.6 m; = 172.5 GeV
Z[v*+jets ALPGEN CTEQG6LI Normalized to NNLO with kFactor = 1.25
Normalized to NLO with
WW, WZ,ZZ ALPGEN  CTEQ®6.1
kFactor=1.26 WW), 1.28 (W Z), 1.30 (ZZ2)
W+jets background evaluated from data

All MC simulated events are hadronized using the Herwig shower model
supplemented by the Jimmy underlying event model
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t-tbar Cross Section Dilepton Channel

L I L I L | ' L L | L | L
ATLAS ------- Theory (approx. NNLO)

J Ldt=0.70 b i m = 172.5 GeV
ee b E A— | 186+ 17 fg; +_3
m i 167+12 *1° +8
eu .. . 177+ 7%} +8
eTL o ﬂ : 1 161 + 23 +gg +§
uTL e hy . 168+24 T4 2
ee w/ b-tagging : A——— 184+ 15 *_22 +_2
up w/ b-tagging ke 175+11 *17 *+3
el w/ b-tagging S 192+ 7 *1) +8
Combination Pt 176+ 5*1% +8

| | | | i(stat)i(sys})i(lumi)
0 50 100 150 l 200 250 300

G [pb]
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t-tbar Cross Section Dilepton Channel

ATLAS

tt Dilepton Cross Section = === Theory (approx. NNLO)

m, = 172.5 GeV

Published in Phys. Lett.B.
707 (RO1R) 459-477
arXiv:1108.3699

Data 2011 ,f|_ dt=0.7fb" HH—  (176x 5714+ 8) pb Published in JHEP 1205
(2012) 059

arXiv:1202.4892

Data 2010,fL dt=35pb'  H——4—i (177220 14+ 7) pb

| + (stat) = (syst) = (I

0 50 100 150 200 250 300 350
o . [pb]
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Fake Leptons

Strategy

I [*

jets jets

Parent sample
Events with two
leptons (passing other
event selection cuts)

Used to predict
> events with two
leptons + one fake
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Fake Leptons

Strategy

l+

jets jets

(TLI

Parent sample
Events with two
leptons (passing other
event selection cuts)

Used to predict
>  events with two
leptons + one fake

Since we remove ID jets within AR<0.4 of a TL

two leptons events s Two lepton events + fakes
with N jets with (N-1) jets
Particles and Fields Seminar
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